CalPoly
Pomona
Pomona
Analyzing Transformer-based AI agents for Codenames Zhong Ooi, Department of Computer Science

Mentor: Dr. Markus Eger

Kellogg Honors College Capstone Project for RSCA 2023

Introduction

Codenames, created by Vlaada Chvátil, is a word association game where a player is given 25 words and needs to generate a word and number pair to convey information that connects a subset of the given words to another group of players. This project is an extension of the "Cooperation and Codenames: Understanding Natural Language Processing via Codenames" by Kim et al., which uses Codenames as the medium to test the capabilities of natural language processing models. With a breakthrough in natural language processing through the creation of the transformer, the ability of natural language processing has increased dramatically.

Objective

- This project seeks to use this new technology to build an Al agent to play Codenames as either as a Codemaster or a Guesser Py using codenames as a medium this project seeks to compared a transformer-based Al agent compared to Word2Vec and Glove

Codenames				
CHAIR	hollywood	DRESS	button	engine
PIT	sLug	tube	MASS	CARrot
beat	DROP	LEAD	BARK	wELL
tower	vet	Plate	car	CIRCLE
London	state	EGYPT	dance	моитн

Game Win Condition: Find all your team spies before the opposing team while dodging the assassin (purple color).
Game Rules

- If you choose a wrong word, your turn ends immediately

Spymaster can not give clues if it contains a word on the board

- Teams are allowed to choose one extra word from the number given by
the spymaster - the spymaster

Player Roles
Codemaster: This player looks to his spies and generates a word that lates to several spies
luesses: This player u
Guesses: This player uses the
spymaster to guess their spies

AI Agents

w2v: "training approach that actually comprises two different approaches ...the CBOW model takes the context as the input and
tries to predict the word, while the Skip-Gram model takes the word and tries to predic the while the
Glove: "trained by linear regression that tries to learn weights such th the weights associated with a word try to predict the log of the
occurrence counts of the word and its contexts [1]" w2vglove: "a concatenation of the vectors created by both wav and
Tlove [1]"
Transtormer: "sequence transduction model based entirely on attention, replacing the recurrent layers most commonly used in
encoder-decoder architectures with multi-headed self-attention. $[2]^{"}$

Transformer Codemaster Methodology

Codemaster

1. Generate a cosine similarity score between the board and all possible clues
2. Use mriob, a map-reduce library, to condense and score all the data from step 1
3. Grab the word number pair from mriob and rank them by
score score

Scoring Method

 MapperB Map all
Reducer and scores related to each clue Reducer
Rank all the words from given by the mapper
Trim all words after the first instance of - Trim all words after the firstinstance of a non-red word

- Continue to trim words from the accepted list if they fall within a Continue to trim words from the accepten list if they fall within a - Add all the points for each word associated with each clue after - Ald the trimming variance of the associated words for each clue

Results

Analysis of a game from the AI transformer Codemaster This game was chosen due to the clea
a flaw with the current implementation

button	вLоск	CANADA	THIEF	beat
BANK	mug	LINE	NINJA	COURT
IVORY	London	KId	time	COLD
ORANGE	millionaire	tie	OLIVE	Green
YARD	BEACH	PART	FISH	LIfE

Codemaster: Transformer
Guesser WWVGlove (300D)

\#	Codemaster Clue		$\begin{array}{\|l\|} \hline \text { Guesser Answer } \\ \hline \text { TIME,BANK,PART } \\ \hline \end{array}$
	Money	3 LIFE,BANK,TIME	
2	CHILDHOOD	$2 \mathrm{KID}, \mathrm{LIFE}$	LIFE,KID
3	NORWEGAA	2 CANADA, NINJA	CANADA,LONDON
4	JENNIFER	2 NINJA,MLLLIONAIRE	BEAT
5	JENNIFER	2 NINJA,MLLLINAIRE	GREEN
6	JENNIFER	2 NINJA,MLLLIONAIRE	BEACH
7	JENNIFER	2 NINJA,MLLLIONAIRE	COURT
8	JENNIFER	2 NINJA,MLLLIONAIRE	Button
9	JENNIFER	2 NINJA,MLLLIONAIRE	MILLIONAIRE,TIE
10	suzuki	1 NIINA	THEF
11	suzuki	1 NIINA	NINJA
12	DRAWN	1 LINE	LINE

Transformer Guesser Methodology

Guesser

1. Generate a cosine similarity score between the board and
2. Return the highest similarity word
3. Restart from step 1 until the guesser guesses a wrong word or the number of guesses equals the number given by codemaster

Summary and Conclusions

Transformer codemaster facing transformer Guess
It performs exceptionally well against a transformer guesser with a low avg guess.
hese two Al agents
Transformer codemaster facing non-transformer Guesser
a higher avormer codemaster finds the assassin far too often, leading to
a higher avg guess percent and a lower win percent.
he average number of turns without assassin loss shows that the A
performance is significantly brought down due to its low win rate
The min guesses and Average amount of turns without assassin that the transformer has the potential to perform as well as the other model's implementations
Non-transformer codemaster facing transformer Guesser
The transformer guesser finds the assassin far too often, leading to a
higher avg guess percentage and a lower win percent.
The average number of turns without assassin loss shows that the AI performance is significantly brought down due to its low win rate The minimum guesses is consistent with the other Al, meaning optimized, the transformer could perform significantly better
codemaster and non-Transformer Guesser

- Employ a method to ensure the same clue isn't given multiple times or
- in succession.

Place a harsher penalty on incorrect words when generating the score

Future Work

explained in the summary and conclusions.
into the the implementation of the game by adding the opposing team environment where guessing the oppsing team's an adversarial
detrimental.
Create a Ul for the game, so it is humans can play against the Al in a more elegant way than the current command-line implementation. Test each AI against humans to see the interaction between each NLP
model and its effectiveness in a real-world application.

Acknowledgments

I want to thank Dr. Adam Summerville for recommending me this project
when I was unsure what to work on and for helping me find a new mento to finish this project.

I would also like to thank Dr. Markus Eger for picking up this project in the while providing me invaluable feedback while providing me invaluable feedback.

References

