
Interactive Website for Visualizing CRDTs

Conflict-free replicated data types are an important component of distributed 
computing. They allow independently running applications to update and maintain 
information without any form of coordination, all while ensuring strong eventual 
consistency of all replicas. While understanding them may sound daunting, CRDTs 
lend themselves to being easily understood through interacting with them. The 
hope of creating an interactive website that allows users to create, visualize, modify, 
and merge CRDTs is to lower the barrier of entry for understanding this important 
concept of distributed computing.

Zane Reis, Department of Computer Science
Mentor: Dr. Lan Yang

Kellogg Honors College Capstone Project, RSCA 2023

Introduction

Features

Techniques

Web servers in general require some means of recording 
information between requests. This means of recording information 
is commonly referred to as persistence. For this application, not 
only does the current state of the simulation need to be persisted 
but, because of the requirement to maintain a history, all previous 
states need to be persisted as well. Additionally, while the 
operations that can be performed on CRDTs are similar, how they 
internally record their state is not. This lack of regularity further 
complicates the problem of persistence.

The naive solution of this history problem is to record the simulation’s history 
by copying the state of the simulation each time an operation is performed. 
The old copy is labeled with the point in history it is from, and the new copy 
becomes the new current state. Besides requiring a significant amount of row 
copying, an issue that worsens linearly as more data is inserted into the CRDT, 
the space complexity is O(n²). This also doesn’t address the issue that CRDTs 
record their information differently depending on the type. The schema will 
need to be modified for each new type of CRDT introduced into the system.

The main technology used to implement this project was Spring. 
Spring Boot, Spring Data JPA, and Hibernate are a very popular 
choice for implementing web services. In addition to these three 
components, Thymeleaf was used to generate the UI.

This project did not implement the strategy outlined above. Instead, it opted to only store the operations performed 
on the simulation. The operations performed completely determine the simulation's current state. Evaluating each of 
these operations in order is all that is needed to calculate it. This solution is ideal performance-wise. The number of 
row insertions is constant per operation, the space complexity is O(n), and the time complexity of evaluation is O(n).

Interpreter Analogy
Evaluating operations one after another to calculate some result is similar to 
the role of an interpreter for an imperative programming language. Because 
of this very close analogy, interpreter and compiler design had significant 
impact on this project's implementation. To calculate what the simulation 
looks like at a specific point in history, the backend simply evaluates each 
operation in order up until that point in history. This is analogous to setting a 
breakpoint in a computer program before executing. This analogy also gave 
inspiration to representing each operation in the database as an operator 
with a set of operands. This format has the effect of being generic enough to 
encompass every type of simulation's CRDTs, simplifying persistence.

Development Execution Safety
This project was able to borrow concepts and techniques usually reserved for ensuring correctness in programming 
languages. There is a simple linter which checks that statements can be executed without error before being inserted 
into the database. Additionally, prior to execution the backend checks the each of the operations are of the same 
type before executing, forming a rudimentary type checker. For example, if one operation is supposed to be 
performed on a GSET while the rest are for 2PSETs, the backend will not attempt to execute and will inform the user 
of the error. However, even this should not have a chance of occurring given the linter operates as intended.

Future Work

The source code is available at https://github.com/zanereis/CRDT

Many of the CRDTs used in Industry are composed of multiple smaller CRDTs. As it stands, each new CRDT needs to 
be implemented in the backend even if it is just composed of smaller CRDTs. The next step is to extend the type 
system and evaluation system to allow users to construct and interact with larger CRDTs.

Release

fig 3: "naïve" operation in database

fig 4: as-implemented operation in database

fig 1: Annotated mockup

The following actions are available 
for the user to perform:
• Initializing new instances of a 

CRDT.
• Performing operations to mutate 

the various CRDT replicas.
• Merging CRDT replicas together 

following the rules of that specific 
CRDT.

• Going backwards through the 
simulation’s history to see how the 
CRDTs' states converge over time.

fig 2: The application stack

https://github.com/zanereis/CRDT

