
Paillier Encryption Acceleration via GPU Programming

Data and Analysis

Today, massive amounts of information are stored digitally. This includes sensitive information, such as credit
card information, personal health data, etc., all of which can be vulnerable to attack, and thus needs to be
encrypted. In this case, we are using the Paillier encryption algorithm. Paillier is a additive homomorphic
cryptosystem. It relies on heavy multiplication and modulation with a very large factor n = p*q, where p and q
are prime numbers. The more data being encrypted, the less efficient the program becomes. Specifically, the
multiplication of the exceedingly large numbers takes a significant amount of work. We attempt to remedy this

issue by accelerating the encryption via GPU programming.

Andrea Schmidt, Computer Science
Mentor: Dr. Tingting Chen

Kellogg Honors College Capstone Project

Problem

Approach
GPU-Accelerated Programming with CUDA
The Graphics Processing Unit, GPU, is composed of hundreds of cores that can handle thousands of threads
simultaneously, in contrast to the CPU (central processing unit), which is composed of just few cores with lots of
cache memory that can handle a few software threads at a time. Thus, we will be using CUDA, a parallel
processing platform and API, to integrate GPU programming into our Paillier implementation. With CUDA, we
can make function calls from the CPU sequential code (the host) to the GPU device code for more computation-
intensive functions (Figure 1). As stated before, Paillier utilizes very large numbers that are too large for
primitive data types, meaning greater than 32-bits. Because of this, we use a BigInteger class to represent
these, which has its own multiplication function. We developed a multiplication function for excessively large
numbers that will run in parallel on the GPU.
The GPU multiplication function was implemented in a using C++, for sequential code, and CUDA , for the
parallel code. To represent the large integers, we used a CUDA vector type, ulonglong4, which would store four
long integers which, when concatenated, would represent our entire large integer. The values of our unsigned
large integers were initialized as random in the sequential CPU code. After this, they were passed to another

Figure 1

Number of
Pairs

2 4 8 16 32 64 128 256 512 1024

Acceleration
Ratio
(CPU/GPU)

0.00907 0.0185 0.03766 0.071104 0.16891 0.38217 0.83972 1.3595 2.73851 5.6007

Table 1 – Acceleration Ratios with Memory Allocation

0

50000

100000

150000

200000

250000

300000

350000

400000

2 4 8 16 32 64 128 256 512 1024

Ti
m

e
 (

m
ic

ro
se

co
n

d
s)

Numbers of Pairs

Average Completion Time
GPU vs CPU

(Memory Allocation)

GPU

CPU

0

500

1000

1500

2000

2500

3000

2 4 8 16 32 64 128 256 512 1024

Ti
m

e
 (

m
ic

ro
se

co
n

d
s)

Number of Pairs

Average Completion Time
GPU vs CPU

(Raw Multiplication)

GPU

CPU

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

0 20 40 60 80 100 120

C
o

m
p

le
ti

o
n

 T
im

e

(m
ic

ro
se

co
n

d
s)

Testing Iteration

Raw Data

GPU

CPU

0

1000

2000

3000

4000

5000

6000

0 20 40 60 80 100 120

C
o

m
p

le
ti

o
n

 T
im

e

m
ic

ro
se

co
n

d
s)

Testing Iterations

Raw Data

GPU

CPU

Graph 1 Graph 2

Graph 3 Graph 4

Graph 1 – Completion time of GPU and CPU multiplication function vs
the amount of pairs of large integers being multiplied. This analysis
includes the time to allocate memory for the variables.

Graph 2 – Completion time of GPU and CPU multiplication function vs
the amount of pairs of large integers being multiplied. This analysis
only includes the pure multiplication

Graph 3 – Completion time of GPU and CPU multiplication function vs
the testing iterations (1-100) for 1024 pair multiplication. This analysis
includes the time to allocate memory for the variables.

Graph 4 – Completion time of GPU and CPU multiplication function vs
the testing iterations (1-100) for 1024 pair multiplication. This analysis
only includes the pure multiplication.

Table 2 – Acceleration Ratios with Multiplication Only

Number of
Pairs

2 4 8 16 32 64 128 256 512 1024

Acceleration
Ratio
(CPU/GPU)

0.30992 0.63929 1.22975 2.26313 4.5042 9.13114 17.9094 38.7318 61.9682 107.3426

Conclusion and Future Work

Acknowledgments

0

20

40

60

80

100

120

2 4 8 16 32 64 128 256 512 1024

A
cc

e
le

ra
ti

o
n

 R
at

io
 (

C
P

U
/G

P
U

)

Number of Pairs

Overall Pattern of Acceleration Ratio

Discussion

Paillier Acceleration ratio =
𝑇𝑡𝑜𝑡𝑎𝑙

𝑇𝑡𝑜𝑡𝑎𝑙− 1−
1

𝑅𝑎𝑡𝑖𝑜
∗ 𝑚∗4+𝑛∗4+1 ∗𝑇𝑚𝑢𝑙

=
104368000

104368000− 1−
1

107.342
∗ 1024∗4+1024∗4+1 ∗11554.88

 = 9.88942

𝑇𝑡𝑜𝑡𝑎𝑙: Total CPU time to run
 the Paillier encryption
 (microseconds)
Ratio: The average
 acceleration ratio of
 raw multiplication
 with 1024 pairs
𝑇𝑚𝑢𝑙: The CPU time to
 calculate one big
 integer multiplication
 with a 1024 bit key
 (microseconds)

m: the clear text length
 function
n: the modular length

CPU function which allocated the memory on the device,
copied the variables from the host onto the device, and
called the multiplication kernel.
The multiplication kernel initialized the amount of blocks
that would be run on the device, and then called the actual
CUDA multiplication function on the device. The
multiplication itself was implemented via PTX virtual
instruction set. After the device code finished the
multiplication, it returned to the CPU allocation function
and copied the result from the device to the host and
deallocated the space initially allocated on the device.

In order to test the code, we ran it with increasing amount of pairs of large integers to be multiplied. We recorded the completion times
of the code both including the memory allocation and the raw multiplication only. After running each of these through 100 iterations, we
took the average and used those values to present our data.

The performance of large integer arithmetic was shown to improve vastly via the GPU device code.
The GPU performance is steady no matter the amount of pairs being multiplied because all of them
run at the same time. In contrast, the completion time for the CPU BigInteger multiplication is
shown to increase exponentially with the amount of pairs being multiplied. Because of this, the CPU
functions out-perform the GPU function with smaller amounts of pairs, but at a certain point their
completion times surpass the steady GPU completion times, and then continue to do so. This
remains true when factoring in memory allocation time, although at a later rate. As can be seen in
graphs 3 and 4, with large amounts of data the GPU function far outperforms the CPU function. This
vast acceleration is also displayed when applying the multiplication acceleration ratio is applied to
the overall runtime of Paillier encryption. By plugging these values in, we calculate an overall
acceleration ratio of approximately 9.88942 for Paillier run with a 1024-bit key and a 1024-bit input
length.

The results regarding large integer arithmetic were consistent with expectations. The more data
being processed, the more efficient the GPU function was relative to the CPU function. This means
that, theoretically, GPU programming can be very useful in implementations of algorithms that
process large amounts of data with computationally intense functions. This remained apparent
when calculating an overall acceleration ratio for Paillier encryption, which showed that the GPU-
accelerated multiplication function could speed up the encryption by a factor of almost 10 for a
1024-bit key. I believe that further steps can be taken from here on out to optimize the use of this
specific cryptosystem via GPU acceleration, such as the extensive key generation. Also, it could be
useful to parallelize other mathematical functions of large integers, as they can be useful beyond
encryption. GPU acceleration showed to be very useful when working with large amounts of data,
and so its capabilities can be further explored in nearly any relevant field.

I would like to thank my mentor, Dr. Tingting Chen, for all of her guidance; this project
would not have been possible without her. I would also like to recognize Steve Jankly, who
provided the Paillier encryption implementation and other supporting classes.

