
Paillier Encryption Acceleration via GPU Programming 

Data and Analysis 

Today, massive amounts of information are stored digitally. This includes sensitive information, such as credit 
card information, personal health data, etc., all of which can be vulnerable to attack, and thus needs to be 
encrypted. In this case, we are using the Paillier encryption algorithm. Paillier is a additive homomorphic 
cryptosystem. It relies on heavy multiplication and modulation with a very large factor n = p*q, where p and q 
are prime numbers. The more data being encrypted, the less efficient the program becomes. Specifically, the 
multiplication of the exceedingly large numbers takes a significant amount of work. We attempt to remedy this 

issue by accelerating the encryption via GPU programming.  
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Problem 

Approach 
GPU-Accelerated Programming with CUDA 
The Graphics  Processing Unit, GPU, is composed of hundreds of cores that can handle thousands of threads 
simultaneously, in contrast to the CPU (central processing unit), which is composed of just few cores with lots of 
cache memory that can handle a few software threads at a time.  Thus, we will be using CUDA, a  parallel 
processing platform and API, to integrate GPU programming into our Paillier implementation. With CUDA, we 
can make function calls from the CPU sequential code (the host) to the GPU device code for more computation-
intensive functions (Figure 1).  As stated before, Paillier utilizes very large numbers that are too large for 
primitive data types, meaning greater than 32-bits. Because of this, we use a BigInteger class to represent 
these, which has its own multiplication function. We developed a multiplication function for excessively large 
numbers that will run in parallel on the GPU. 
The GPU multiplication function was implemented in a using C++, for sequential code,  and CUDA , for the 
parallel code.  To represent the large integers, we used a CUDA vector type, ulonglong4, which would store four 
long integers which, when concatenated, would represent our entire large integer. The values of our unsigned 
large integers were initialized as random in the sequential CPU code. After this, they were passed to another 

  

Figure 1 

Number of 
Pairs 

2 4 8 16 32 64 128 256 512 1024 

Acceleration 
Ratio 
(CPU/GPU) 

0.00907 0.0185 0.03766 0.071104 0.16891 0.38217 0.83972 1.3595 2.73851 5.6007 

Table 1 – Acceleration Ratios with Memory Allocation 
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Testing Iteration 
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Graph 1 – Completion time of GPU and CPU multiplication function vs 
the amount of pairs of large integers being  multiplied. This analysis 
includes the time to allocate memory for the variables. 

Graph 2 – Completion time of GPU and CPU multiplication function vs 
the amount of pairs of large integers being  multiplied. This analysis 
only includes the pure multiplication  

Graph 3 – Completion time of GPU and CPU multiplication function vs 
the testing iterations (1-100) for 1024 pair multiplication. This analysis 
includes the time to allocate memory for the variables. 

Graph 4 – Completion time of GPU and CPU multiplication function vs 
the testing iterations (1-100) for 1024 pair multiplication. This analysis 
only includes the pure multiplication. 

Table 2 – Acceleration Ratios with Multiplication Only 

Number of 
Pairs 

2 4 8 16 32 64 128 256 512 1024 

Acceleration 
Ratio 
(CPU/GPU) 

0.30992 0.63929 1.22975 2.26313 4.5042 9.13114 17.9094 38.7318 61.9682 107.3426 

Conclusion and Future Work 
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Discussion 

Paillier Acceleration ratio =  
𝑇𝑡𝑜𝑡𝑎𝑙

𝑇𝑡𝑜𝑡𝑎𝑙− 1−
1

𝑅𝑎𝑡𝑖𝑜
∗ 𝑚∗4+𝑛∗4+1 ∗𝑇𝑚𝑢𝑙

 

 

= 
104368000

104368000− 1−
1

107.342
∗ 1024∗4+1024∗4+1 ∗11554.88

 = 9.88942 

𝑇𝑡𝑜𝑡𝑎𝑙: Total CPU time to run   
             the Paillier encryption   
             (microseconds) 
Ratio: The average    
            acceleration ratio of   
            raw multiplication    
            with 1024 pairs 
𝑇𝑚𝑢𝑙: The CPU time to  
           calculate one big  
           integer multiplication   
           with a 1024 bit key 
           (microseconds) 

m: the clear text length  
      function 
n: the modular length  

CPU function which allocated the memory on the device, 
copied the variables from the host onto the device, and 
called the multiplication kernel.  
The multiplication kernel initialized the amount of blocks 
that would be run on the device, and then called the actual 
CUDA multiplication function on the device. The 
multiplication itself was implemented via PTX virtual 
instruction set. After the device code finished the 
multiplication, it returned to the CPU allocation function 
and copied the result from the device to the host and 
deallocated the space initially allocated on the device. 

In order to test the code, we ran it with increasing amount of pairs of large integers to be multiplied. We recorded the completion times 
of the code both including the memory allocation and the raw multiplication only. After running each of these through 100 iterations,  we 
took the average and used those values to present our data. 

The performance of large integer arithmetic was shown to improve vastly via the GPU device code. 
The GPU performance is steady no matter the amount of pairs being multiplied because all of them 
run at the same time. In contrast, the completion time for the CPU BigInteger multiplication is 
shown to increase exponentially with the amount of pairs being multiplied. Because of this, the CPU 
functions out-perform the GPU function with smaller amounts of pairs, but at a certain point their 
completion times surpass the steady GPU completion times, and then continue to do so. This 
remains true when factoring in memory allocation time, although at a later rate. As can be seen in 
graphs 3 and 4, with large amounts of data the GPU function far outperforms the CPU function. This 
vast acceleration is also displayed when applying the multiplication acceleration ratio is applied to 
the overall runtime of Paillier encryption. By plugging these values in, we calculate an overall 
acceleration ratio of approximately 9.88942 for Paillier run with a 1024-bit key and a 1024-bit input 
length. 

The results regarding large integer arithmetic were consistent with expectations. The more data 
being processed, the more efficient the GPU function was relative to the CPU function. This means 
that, theoretically, GPU programming can be very useful in implementations of algorithms that 
process large amounts of data with computationally intense functions. This remained apparent 
when calculating an overall acceleration ratio for Paillier encryption, which showed that the GPU-
accelerated multiplication function could speed up the encryption by a factor of almost 10 for a 
1024-bit key. I believe that further steps can be taken from here on out to optimize the use of this 
specific cryptosystem via GPU acceleration, such as the extensive key generation. Also, it could be 
useful to parallelize other mathematical functions of large integers, as they can be useful beyond 
encryption. GPU acceleration showed to be very useful when working with large amounts of data, 
and so its capabilities can be further explored in nearly any relevant field.  
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