Species Conservation in North American Forests, 1982-2020

Danielle LaVine, Mathematics
Mentor: Dr. Adam King
Kellogg Honors College Capstone Project

Introduction

The United Nations estimates that over one million species are threatened with extinction worldwide and notes that the abundance of species in most terrestrial habitats has decreased by at least 20\% since 1900. To help understand the nature of species decline within the United States, we will study data from the International Union for Conservation of Nature (IUCN)'s Red List of Threatened Species for species inhabiting North America's forests. The IUCN Red List recognizes seven different categories which describe a species' risk of extinction: least concern (7), near threatened (6), vulnerable (5), endangered (4), critically endangered (3), extinct in the wild (2), and extinct (1). A species is considered threatened if it is assigned a Red List Category of 'vulnerable', 'endangered', or 'critically endangered'. We will study the Red List status of 773 species in North American forests from 1982 to 2020. We will estimate the trend of conservation status over time by fitting several mixed effects models that show how Red List Status has changed over time, considering the influence of age, period, and cohort on conservation status.

Red List Assessments over Time

Red List Category

1990
2000
2010
2020
Figure 1: Trajectories of all 773 species. A slight jitter was added to this visual in order to avoid line overlap.

Results

We fit 14 different models which consider different combinations of age, period, cohort, taxonomy information, and random effects.
Models 1-6 consider a random intercept with different combinations of our time-varying components.

- Models 7-12 are identical to models 1-6, with taxonomy added as a categorical predictor. Models 13 and 14 are extensions of two well performing models and consider a random slope for age.
We are interested in examining the age-cohort models (5 and 11) further because of the highly significant slope estimates in both versions of this model. We will examine the parameter estimates for the age-cohort model considering a random slope for age in Table 3.
- Models 13 and 14 show highly significant age effects when other factors are held fixed, and significant cohort effects when other factors are fixed.
Both models appear to perform better than the age-cohort models that do not include a random intercept.
The first models suggests that for every 15 -year increase in the year that a species is first assessed, the Red List category decreases by 1 , on average when age is fixed. Our second model shows that for every 15 -year increase in the year that a species is first assessed, the Red List category decreases by 0.2 on average for fixed age and kingdom.

$\begin{array}{llll}1990 & 2000 & 2010 \\ \text { Yeara f fistassasssment }\end{array}$

Model 11: Cohort Effects

$\begin{array}{llll}1990 & 2000 & 2010 & 2020\end{array}$

Model 13: Age Effects
\square

Model 14: Age Effects
\square
$\begin{array}{llll}0 & 10 & 20 & 30\end{array}$

Methods

Mixed Effects Models

Mixed effects models allow us to consider the variation between subjects, as well as identify average trends for all 773 species. Mixed effects models allow us to include a random intercept and/or random slopes. Let $X_{i j k}$ denote the value of the $k^{\text {th }}$ predictor at the $j^{\text {th }}$ observation of the $i^{\text {th }}$ species. Then the random intercept model is of the form

```
Yij =(\alpha+ui)+\mp@subsup{\beta}{1}{}\mp@subsup{X}{ij1}{}+\mp@subsup{\beta}{2}{}\mp@subsup{X}{ij2}{}+\cdots+\mp@subsup{\beta}{K}{}\mp@subsup{X}{ijK}{}+\mp@subsup{\epsilon}{ij}{},
```

where $\alpha_{1} \beta_{k^{\prime}}$ and $\varepsilon_{i j}$ are the usual intercept, slopes, and error constant of a standard linear regression model, and represent the estimated population average of these parameters. The value u_{i} represents a random intercept, which we assume has a normal distribution: $u_{i} \sim N\left(0, \sigma_{u}{ }^{2}\right.$, where $\sigma_{u}{ }^{2}$ is the individual species variation (van Belle et al., 2004).

- Age-period-cohort analysis

In longitudinal studies, age, period, and cohort effects can be useful in understanding time-varying components, such as how species conservation changes over time. For our data, we define age period, and cohort as follows:

- Age: time that has passed since the species' first assessment
- Period: assessment year
- Cohort: the year that a species is first assessed

Ideally, we would be able to include all three effects into a single model, however, this is impossible due to the exact linear dependence between age, period, and cohort, i.e., Period $=$ Age + Cohort (Bell and Jones, 2015)

- Assessing Goodness of Fit

The goodness of fit for mixed effects models are described by a conditional R^{2} and a marginal R^{2}. Marginal $R^{2}\left(R_{m}{ }^{2}\right)$ measures the proportion of the variance explained by the fixed effects only, whereas conditional $R^{2}\left(R_{c}{ }^{2}\right)$ measures the proportion of the variance that is explained by both fixed and random effects and is interpreted as the variance explained by the full model. Nakagawa and Schielzeth (2013) developed the following formulas for conditional and marginal R^{2} :

$$
\begin{aligned}
R_{m}^{2} & =\frac{\sigma_{s}^{2}}{\sigma_{f}^{2}+\sigma_{x}^{2}+\sigma_{e}^{2}} \\
R_{c}^{2} & =\frac{\sigma_{f}^{2}+\sigma_{u}^{2}}{\sigma_{f}^{2}+\sigma_{u}^{2}+\sigma_{e}^{2}},
\end{aligned}
$$

where $\sigma_{f}{ }^{2}$ is the variance of the fixed effects, $\sigma_{u}{ }^{2}$ is the variance of the random effects, and $\sigma_{e}{ }^{2}$ is the variance of the residuals. We will use $R_{c}{ }^{2}$ to assess the fit of our models.

Model No.	Model	Intercept	Age	Period	Cohort	σ_{u}^{2}	σ_{e}^{2}	R_{m}^{2}	R_{c}^{2}
1	Age- Only	5.238	$-0.010^{* * *}$			2.543	0.228	0.003	0.918
2	Period-Only	5.238		$-0.013^{* * *}$		1.825	0.240	0.006	0.912
3	Cohort-Only	5.081			$-0.063^{* * *}$	1.825	0.240	0.164	0.903
4	Age-Period	5.134	$0.058^{* * *}$	$-0.069^{* * *}$		1.864	0.228	0.161	0.909
5	Age-Cohort	5.134	$-0.011^{* * *}$		$-0.069^{* * *}$	1.864	0.228	0.161	0.909
6	Period-Cohort	5.134		$-0.011^{* * *}$	$-0.058^{* * *}$	1.864	0.228	0.161	0.909

Table 1: Parameter estimates and measures of goodness of fit for initial age-period-cohort analysis. Note that all the two-factor models are mathematically equivalent. Significance levels denoted by* $0.05{ }^{* *} 0.01 * * 0.001$

Model No.	Model	Intercept	Age	Period	Cohort	σ_{u}^{2}	σ_{e}^{2}	R_{m}^{2}	R_{c}^{2}
7	Age- Only	6.424	$-0.011^{* * *}$				1.284	0.228	0.367
8	Period-Only	6.435		$-0.012^{* * *}$		1.266	0.228	0.369	0.904
9	Cohort-Only	6.309			-0.011^{*}	1.241	0.241	0.374	0.899
10	Age-Period	6.436	0.005	$-0.017^{* * *}$		1.265	0.228	0.369	0.904
11	Age-Cohort	6.436	$-0.012^{* * *}$		$-0.017^{* * *}$	1.265	0.228	0.369	0.904
12	Period-Cohort	6.436		-0.017	$-0.005^{* * *}$	1.265	0.228	0.369	0.904

Table 2: Parameter estimates and measures of goodness of fit for age-period-cohort analysis with kingdom added as a categorical predictor. Significance levels denoted by * $0.05{ }^{* *} 0.01{ }^{* * *} 0.001$.

Model No.	Model	Intercept	Age	Cohort	$\sigma_{u 1}^{2}$	$\sigma_{u 2}^{2}$	σ_{e}^{2}	R_{m}^{2}	R_{c}^{2}
13	Without taxonomy predictor	5.888	$-0.013^{* * *}$	$-0.069^{* * *}$	1.848	0.001	0.153	0.151	0.941
	With taxonomy predictor	6.438	$-0.012^{* * *}$	$-0.016^{* *}$	1.298	0.001	0.153	0.366	0.936

Table 3: Age-cohort models with a random slope. Significance levels denoted by * $0.05{ }^{* *} 0.01^{* * *} 0.001$

Discussion

 differences in our model estimates, particularly within cohort effects.

 true extent that each of these time-varying components interact with one another.

Acknowledgements

[^0]References

- Bell, A. and Jones, K. (2015). Age, period and cohort processes in longitudinal and life course analysis: A multilevel perspective. In A life course
perspective on health trajectories and transitions, pages 197-213. Springer, Cham
- UCN (2020).The IUCN Red List of Endangered Species. Accessed: 2020-08-21.
- Mace, G. M. (2004). The role of taxonomy in species conservation. Philosophical Transactions of the Royal Society of London. Series B: Biological
Sciences, 359(1444):711-719.
- Nakagawa, S.and Schielzeth. H. (2013). A general and simple method for obtainingR2fromgeneralized linear mixed-effects models. Methods in
ecology and evolution, 4(2)::33-142.
- van Belle, G., Fisher, L. D., Heagerty, P. J., and Lumly, T. (2004).Biostatistics: A Methodology For the Health Sciences. Wiley.

[^0]: Special thanks to Dr. King, my family and friends, and the Kellogg Honors College for the guidance and support on this project and more. I would also like to acknowledge the International Union for Conservation of Nature, who provided the data utilized throughout this project.

