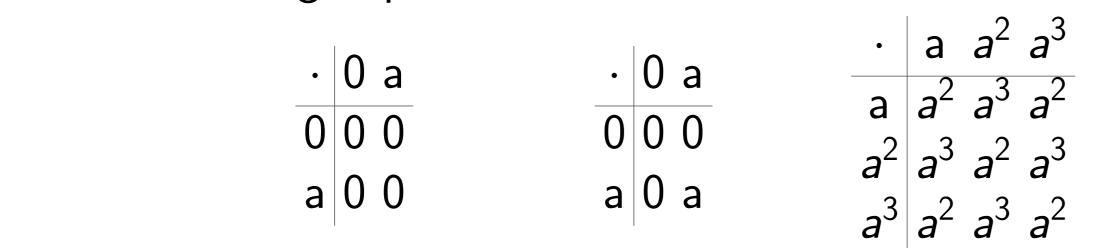
Semigroups and the Characteristics of their Interassociates Rebecca Starr Major: Applied Math Advisor: Dr. Berit Givens Kellogg Honors College Capstone 2011

Basic Definitions

► A **semigroup** is a set *S* with an associative binary operation. ► A semigroup, (S, \cdot) , has an **interassociate**, (S, \star) , if for all *a*, *b*, *c* ∈ *S*, $a \cdot (b \star c) = (a \cdot b) \star c$ and $a \star (b \cdot c) = (a \star b) \cdot c$.

Examples

Here are three semigroups.



Properties That Survive

Property: A group is a set G with an associative binary operation, usually + or \cdot , which has an identity element and is such that each element has a unique inverse. If (S, \cdot) is a group, any interassociate (S, \star) is a group that is isomorphic to (S, \cdot) .

Proof: Let (S, \cdot) be a group and (S, \star) an interassociate of (S, \cdot) . Then, since (S, \cdot) is a monoid, $a \star b = a \cdot c \cdot b$ for some fixed $c \in S$. Let $e = c^{-1}$. Then we have

$$b \star e = bce = bcc^{-1} = be = b$$

Example 2 Example 3 Example 1 Any group is also a semigroup, but not every semigroup is a group, as seen in these examples.

Objective

In 2004 Gould, Linton, and Nelson discussed monogenic semigroups and their interassociates. There has not been a discussion of what properties different types of semigroups must share with their interassociates. In this project, we investigated what properties of semigroups are shared with their interassociates. If a semigroup had a property such as commutativity, we tried to prove that any interassociate would also have that property or to find an example of an interassociate without that property.

 $e \star b = ecb = c^{-1}cb = eb = b$ Therefore (S, \star) has an identity $e = c^{-1}$. Now Let $b = a^{-1}$, and then $b = ea^{-1}e = c^{-1}a^{-1}c^{-1}$. This gives us $a \star b = acb = acc^{-1}a^{-1}c^{-1} = aea^{-1}c^{-1} = aa^{-1}c^{-1} = ec^{-1} = c^{-1} = c^$ $b \star a = bca = c^{-1}a^{-1}c^{-1}ca = c^{-1}a^{-1}ea = c^{-1}a^{-1}a = c^{-1}e = c^{-$ Hence every element of (S, \star) has an inverse. Thus (S, \star) is a group. **Property:** A semigroup, (S, \cdot) , has a **zero element** z if for all $a \in S$, za = z and az = z. If (S, \cdot) has a zero element, then every interassociate (S, \star) has a zero element. **Proof:** Let (S, \cdot) have a zero element, z. Also let (S, \star) be an interassociate of (S, \cdot) . Then from $z \cdot (a \cdot b) \star c = (z \cdot a) \cdot (b \star c)$ we can see that $z \star c = z$. Similarly, $c \star z = z$. Therefore (S, \star) also has a zero element.

Properties That Survive With Certain limits

A semigroup, (S, \cdot) , is **periodic** if for all $x \in S$, there are $n, m \in \mathbb{Z}$ such that $x^n = x^m$.

Properties That Fail

- A semigroup, (S, \cdot) , is **null** if $0 \in S$ and $a \cdot b = 0$ for all $a, b \in S$. Example 1 above is clearly null and is an example of a null semigroup with an interassociate that is not null.
- A semigroup, (S, \cdot) , is a **band** if $x^2 = x$ for all $x \in S$. Example 2 is a band since $0^2 = 0$ and $a^2 = a$.

A semigroup, (S, \cdot) , is a **semilattice** if $x^2 = x$ and xy = yx for all $x, y \in S$. Example 2 is a semilattice since it is a band and it is commutative.

Lemma: All of the above properties fail to be preserved by interassociates. **Counterexample:** For example, let (S, \cdot) and (S, \star) have the cayley tables shown in Examples 1 and 2. Then (S, \cdot) and (S, \star) are interassociates because $(a \cdot b) \star c = 0 \star c = 0 = a \cdot (b \star c)$. But for each property above, exactly one of Examples 1 and 2 has the property.

References

Conjecture: Assume (S, \cdot) is periodic and that (S, \star) has the form $x \star y = xky$ for some fixed $k \in S$. Then (S, \star) is periodic. **Proof:** Assume (S, \cdot) is periodic and (S, \star) is an interassociate with the form $x \star y = xky$ for some $k \in S$. Then

$$x^{*2} = x \star x = xkx$$

$$x^{*3} = x \star x \star x = xkxkx = (xk)^{2}x$$

$$x^{*4} = x \star x \star x \star x = xkxkxkx = (xk)^{3}x$$

$$x^{*5} = x \star x \star x \star x \star x = xkxkxkxkx = (xk)^{4}x.$$

Clearly $x^{\star n} = (xk)^{n-1}x$, for $n \in \mathbb{Z}$. Since $xk \in S$, we know $(xk)^w = (xk)^z$ for some w, $z \in \mathbb{Z}$. Hence $(xk)^w x = (xk)^z x$ and $x^{\star n} = x^{\star m}$ for n = w + 1and m = z + 1. Therefore (S, \star) is periodic.

It is well-known that any finite semigroup is periodic, so any interassociate of a finite periodic semigroup must also be periodic. It is not yet known if any interassociate of an infinite periodic semigroup is periodic.

Property: If (S, \cdot) is commutative and cancellative, then any interassociate (S, \star) is also commutative and cancellative.

Boyd, S.J., and M. Gould, *Interassociativity and Isomorphism*, Pure Math. Appl. 10 (1999), no. 1, 23-30.

Boyd, S.J., M. Gould and A.W. Nelson, *Interassociativity of Semigroups*, Proceedings of the Tennessee Topology Conference, World Scientific, 1997, pp. 33-51.

Gould, M., K.A. Linton, and A.W. Nelson, *Interassociates of Monogenic* Semigroups, Semigroup Forum 68 (2004), pp. 186-201.

Belowie, J. M., "Fundamentals of Semigroup Theory", Oxford University Press, 1995.

Unsolved Properties

Some of the properties we attempted to solve but were unable to without certain restrictions include **commutativity**, cancellativity, infinite periodic semigroups and orthodox semigroups, where an orthodox semigroup has the property that if $e^2 = e$ and $f^2 = f$, then *efef* = *ef*. For example. we found commutativity and cancellativity will survive together, but not separately.