Event Horizon Surface of a Distorted Myers

Perry Black Hole

 Christopher Hoover (along with Hunter Seropian and

 Christopher Hoover (along with Hunter Seropian and Nasim Azadi), Physics

 Nasim Azadi), Physics}CalPoly
Pomona

Mentor: Dr. Shohreh Abdolrahimi
Kellogg Honors College Capstone Project
$Z(\theta)=\int_{\pi}^{\theta} Z_{, \theta^{\prime}} d \theta^{\prime}, \quad Z_{, \theta}=\left[\epsilon\left(\sigma\left[1+\hat{a}^{2}(\theta) \cos ^{2}\left(\frac{\theta}{2}\right)\right] e^{2(\hat{\gamma}(\theta)-\widehat{W}(\theta))}-\rho_{, \theta}^{2}\right)\right]^{\frac{1}{2}}$

The general form of what we called our " F " equation.
Along with our Rho equation, this equation produces our horizon surface.

- $\alpha=0.25-\alpha=0.8-\alpha=1$
(φ, θ) Section, showcasing the horizon surface with different rotational parameter values. This graph showcases dual quadrupole distortion values of $-1 / 15$.

Allowable Alpha Values for a special case, $b_{0}=1 / 5, b_{2}=-1 / 5, a_{0}=-2 / 5$, and $a_{2}=2 / 5$. The white region indicates where real solutions would occur, while the grey shows areas of an imaginary solution for the horizon surface.

(ψ, θ) Section, showcasing the horizon surface with different rotational parameter values. This graph showcases dual quadrupole distortion values of $-1 / 15$.

— $\alpha=0.2 — \alpha=0.4-\alpha=0.6-\quad \alpha=0.6-\cdot-\alpha=0.6$
(ψ, θ) Section, showcasing the horizon surface with different rotational parameter values. This graph shows the horizon surface for the special case pictured to the left.

