CALIFORNIA STATE POLYTECHNIC UNIVERSITY Mechanical Engineering Department

ME 4150, HEAT TRANSFER Course Syllabus Spring 2022

TEXT: Fundamentals of Heat Transfer, Bergman & Levine, 8th ed., ebook **COURSE PREREQUISITES:** C or better in MAT 216 or MAT 234 or C or better in MAT 2240 and ME 3121

DATE	<u>TEXT</u>	TOPIC	VIDEO LECTURES
1/24 M	1.1-1.7	Introduction to Heat Transfer	Lecture 01
1/26 W	1.1-1.7	Modes of Heat Transfer	Lecture 01
1/28 F	1.1-1.7	Control Volume Equations	Lecture 01
1/31 M	1.3-1.7	Control Volume Equations	Lecture 01
2/2 W	2.1-2.2	Conduction Heat Transfer	Lecture 02
2/4 F	2.3	Heat Diffusion Equation	Lecture 03
2/7 M	3.1	1D Conduction	Lecture 04
2/9 W	3.3-3.4	Radial Conduction	Lecture 05
2/11 F	3.6	Extended Surfaces	Lecture o6
2/14 M	3.6	Fin Analysis	Lecture 07
2/16 W	3.6	Fin Efficiency	Lecture 07
2/18 F	4.1-4.2	2D Conduction	Lecture 08
2/21 M	4.3	Conduction Shape Factor	Lecture 09
2/23 W 2/25 F	4.4-4.6	Finite Difference Equations 1 st Exam	Lecture 09
		1 L'Aum	
2/28 M	5.1	Transient Conduction	Lecture 10
3/2 W	5.2	Lumped Heat Capacity Model	Lecture 11
3/4 F	5.4-5.5	Spatial Effects	Lecture 11
3/7 M	12.1-12.2	Radiation Heat Transfer	Lecture 12
3/9 W	12.3-12.4	Blackbody Radiation	Lecture 12
3/11 F	12.5	Real Surfaces	Lecture 13
3/14 M	12.6	Surface Properties	Lecture 13
3/16 W	13.1	Radiation View Factors	Lecture 14
3/18 F	13.1	Radiation View Factors	Lecture 14

3/21 3/23 3/25	M W F	13.2 13.3	Blackbody Exchange Grey Surface Exchange 2 nd Exam	Lecture 15 Lecture 16
3/28 3/30 4/1	M W F		Academic Holiday Academic Holiday Academic Holiday	
4/4	M	6.1-6.3	Convection Heat Transfer	Lecture 18
4/6	W	7.1	External Flows	Lecture 18
4/8	F	7.2	Laminar Flat Plate Flow	Lecture 19
4/11	M	7.2	Turbulent Flat Plate Flow	Lecture 19
4/13	W	7.2	Mixed Flat Plate Flow	Lecture 19
4/15	F	7.3-7.4	Flow Over Cylinders	Lectures 20 & 21
4/18	M	8.1-8.2	Internal Flows	Lecture 22
4/20	W	8.3	Tube Energy Balance	Lecture 23
4/22	F	8.4	Laminar Tube Flow	Lecture 24
4/25 4/27 4/29	M W F	8.5 8.7	Turbulent Tube Flow Heat Transfer Enhancement 3rd Exam	Lecture 24 Lecture 24
5/2	M	9.1-9.3	Free Convection Heat Transfer	
5/4	W	9.4	Vertical Surfaces	
5/6	F	9.5	Turbulence Effects	
5.9 5/11 5/13	M W F	9.6	Empirical Correlations HT in Everyday Experiences Course Review	Lecture 25 Lecture 26

Final Exams: Section 1, Monday, May 16, 7:00 to 8:50 am Section 2, Wednesday, May 18, 9:00 to 10:50 am Section 3, Friday, May 20, 9:00 to 10:50 am

Instructor:Prof. John R. Biddle, PhDOffice:98 C3-9

Office Hours: MWF: 11:00 am to 12 noon

Please contact the instructor for other possible meeting times if you are not available at these scheduled office hours

Office Phone: (909) 869-2589

E-mail: jrbiddle@cpp.edu

Class attendance is highly recommended.

Please check the course Canvas web-site often for updated course information.

Exam attendance is required (no make-up exams will be given).

Turn off and put away cellphones during class and tests.

Homework should be done on 8 $1/2 \ge 11$ engineering green paper or equivalent (single sided)

Ten homework sets will be turned in for grading. Homework counts 10% of your course grade. Each HW set will therefore count as 1% of your course grade. Homework will be due at instructor specified dates. See the Homework Policy document passed out by the instructor for the homework problems to be turned in for grading, the answers and due dates. Only select problems from the homework set will be graded.

Final course grades will be determined by the instructor using a modified curve system. A 90-100, B 80-90, C 70-80, C- 65-70, D 60-65, F < 60

COURSE EVALUATION:	1 st Exam	20%
	2 nd Exam	20%
	3 rd Exam	20%
	Final Exam	30%
	Homework	<u>10%</u>
	TOTAL	100%

THE DROP POLICY for the COLLEGE OF ENGINEERING is at **www.csupomona.edu/~engineering/student/student questions.html**.