
A Holistic Approach for Securing In-app Purchase (IAP)
Vulnerability in Mobile Applications

Yeh-chi Lai
California State Polytechnic University, Pomona

3801 West Temple Avenue
Pomona, California 91768

yehchilai@cpp.edu

Mohammad Husain
California State Polytechnic University, Pomona

3801 West Temple Avenue
Pomona, California 91768
mihusain@cpp.edu

ABSTRACT
Because of the successful mobile app society, there is a new
business model that has appeared, the In-App Purchase
(IAP). IAP allows users to purchase products, such as ex-
clusive items, digital goods, and additional contents directly
from a mobile app. From a developer’s point of view, this
is a lucrative opportunity, so there are more and more inde-
pendent developers who have begun to participate in using
this new business model. In the developer community, there
has also been a huge change because of a popular game en-
gine called Unity 3D Engine. On Unity, the developers need
to write the code only once, and then can deploy their app
on Android, iOS, and Windows mobile platform seamlessly.
Because of this convenience, there are many new apps pub-
lished every day and developers are quick to integrate IAP
functionality. However, many app developers are not very
familiar with security issues and lack the background knowl-
edge or resources to protect their apps. In this paper, we
first provide a detailed analysis of security implications of
IAP vulnerabilities in mobile apps such as compromising an
app, man-in-the-middle attack, and reverse engineering. To
address the problem, we then developed a security plug-in
for IAP functionality in app development engines, which can
be easily integrated with existing development platforms for
independent developers. We also provide a detailed demon-
stration of how the plug-in can prevent IAP attacks by pro-
viding confidentiality and integrity guarantee, securing net-
work traffic as well as applying code obfuscation. The plug-
in is open-source and available for the community.

CCS Concepts
•Security and privacy → Vulnerability management;
Software security engineering; Web application se-
curity; Software reverse engineering;

Keywords
in-app purchase; IAP

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ACSAC ’16 December 5?9, 2016, Los Angeles, California, USA
c© 2016 ACM. ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

1. INTRODUCTION
In-App Purchase (IAP) is a purchasing process used in

mobile apps. It provides different marketing strategies to
developers, micro independent software vendors (MicroISV).
Because it is difficult to have a high number of downloads
at the beginning of app publication, developers usually pub-
lish free mobile applications with IAP purchasing process
first. By using this strategy, they may obtain better down-
loads for their mobile application. On the other hand, users
can download the mobile app for free, and use most of its
functionality. If users want to get more or complete con-
tents, users can use IAP to purchase extra content, such
as exclusive items, new characters, virtual goods and so on.
This purchasing process has benefits for both developers and
users. However, there are more and more IAP attackers try-
ing to exploit this purchasing process. The following will
discuss two categories of how attackers exploit IAP. One is
exploitation the operating system, and another is exploita-
tion the mobile application itself.

First, the simplest way to attack IAP is to exploit the op-
erating system, for example, root an Android [9] or jailbreak
an iOS [4] device. The idea of this method is to obtain the
root permission and compromise IAP purchasing process.
It is difficult to prevent this exploitation because the au-
thentication process of both operating systems needs to be
redesigned.

The other method is exploiting IAP without getting the
root permission [11]. There are two branches of this method
based on where the data is saved on local devices or servers.
If the IAP data is saved on the server, attackers can use
network packet analyzers such as Paros, Charles, and Wire-
shark [15]. Attackers can identify IAP authentication pack-
ets to duplicate or modify the packets and send them to
local devices. The local device will take these packets as
an authenticated message, and then attackers can obtain
new contents for free. In this case, the packets are not en-
crypted, so it is easy to be exploited. Another branch is
using file management tools such as iTools, DiskAid, and
iPhone Explorer to modify local IAP data. Attackers can
use these tools to search a particular file which contains the
data of purchased records and edit several code lines of this
file. They also can replace the file by a compromised file.
This IAP exploitation method is popular to attackers and
users who are not willing to pay. When attackers exploit an
application, other users can use the package which attackers
provided to escape IAP process and get new content for free.

The last method is reverse engineering. Attackers can re-
verse developer’s application by using some tools, such as



Figure 1: Potential solutions of attack scenarios

Figure 2: Overview of the plug-in

dex2jar [13] and JDI-GUI [3]. After attackers decompress
the application, they analyze the source code and find out
the part of the IAP process. The IAP process will be mod-
ified based on attackers’ requirements. Then, attackers re-
build the application and can obtain the products for free.
To prevent vulnerabilities appearing in each development
stage, this paper will show several scenarios including device
storage access, internet access, and application compromise
and finally how to solve these vulnerabilities.

Figure 1 shows the overall method used to prevent vul-
nerabilities in different scenarios. The blue diagrams show
normal mobile app working mechanism of IAP processing.
The app can access data from local devices, and can com-
municate with a web service through the Internet. The red
diagrams indicate the vulnerabilities that attackers will try
to compromise. The yellow diagrams represent the method
that we will utilize to prevent these attacks.

Finally, this paper will provide a general solution plug-in
for developers to secure IAP processing in mobile applica-
tion. In this plug-in, three parts will be included to help
developers prevent attacks on their applications. This plug-
in will provide secure data access on local devices, use a
secure web server for transferring data, and implement code
obfuscation.

2. BACKGROUND: UNITY 3D ENGINE
From the developer point of view, there are three tiers to

demonstrate the process of developing an application by us-
ing Unity 3D Engine. The first one is the development tool
provided by Unity 3D Engine. The second is third party
plug-ins. Plug-ins have many functionalities, such as en-
hanced shader, animation controller, AI, and so on. The
last tier is an application. The application can be a simple
game or a chat app. We will focus on the second one and im-
plement our plug-in for developers. Figure 3 illustrates the
basic structure of the Unity 3D Engine. We will skip the

Figure 3: Unity 3D engine infrastructure (devel-
oper’s point of view).

first and the third tier and only integrate a new mechanism
into the second tier. After the integration is completed, this
plug-in can be published, and independent developers can
use it.

3. OVERVIEW OF THE PROPOSED PLUG-
IN

Based on the Unity 3D Engine infrastructure, a plug-in
is implemented in the second tier. A new mechanism will
contain two parts, an original IAP wrapper, and an encryp-
tion framework. The IAP wrapper includes original devel-
opment APIs from both Android and iOS systems. It will be
responsible for non-consumable and subscription products.
The encryption framework will be responsible for consum-
able products. This framework contains three mechanisms,
Data Save/Load, Internet Access, and Code Obfuscation il-
lustrated in Figure 2.

3.0.1 IAP wrapper module
The first part of the proposed IAP plug-in is an original

IAP wrapper. The original IAP means the application plat-
form interface (API) that is provided by the manufacturer,
such as Google Inc., Apple Inc., and Microsoft Inc. The first
thing we have to understand is what an API is and how we
make a wrapper connect with the API.

The API is software that connects application software
and hardware devices. Developers do not need to consider
the difference between various device models. Manufactur-
ers provide many functionalities, such as Internet connec-
tion, camera controllers, user interface builders, and so on.
The IAP functionality is one part of the whole API so that
developers can integrate or conveniently use this functional-
ity.

Different manufacturers provide their API with various
programming languages, and developers must learn these
languages to build their application on different software
platforms. Fortunately, the Unity provides functionality
that can call compiled scripts. This means that develop-
ers can write a separate script for different platforms and
compile the script to integrate into the Unity. Figure 4 il-
lustrates how the Unity API communicates with different
platforms.

According to Figure 4, the IAP wrapper is able to call
original platform APIs. We implement different IAP func-
tion with a particular API. For example, the Google Store
IAP process can be compiled as a jar file. Then, the Unity



Figure 4: IAP Wrapper.

Figure 5: Encryption Module.

API can call the compiled jar file to run the IAP process
on Android devices. Similar to the Android device, an IAP
process can be compiled on iOS and Windows devices. The
compiled file will be a dynamic link library (DLL) file. The
Unity API can import this DLL file and run the IAP process
script. That is how the Unity IAP wrapper communicates
with variant manufacture devices.

3.1 Encryption module
The encryption module contains original save and load

functionality with an encryption layer. Unity provides data
saving and loading API for developers. The API name is
PlayerPrefs. For this paper, a new class called CryptoPlay-
erPrefs will be created. Moreover, the CryptoPlayerPrefs
provides developers with the same logic, the similar method
names, and an additional encryption layer. For developers,
they do not have a learning curve to use the plug-in. Figure
5 represents how the CryptoPlayerPrefs access local data by
using original APIs.

To access local data securely, CryptoPlayerPrefs call an
encryption framework, and the framework saves or loads a
particular data from local devices. For example, when a tar-
get device is Android and users would like to update game
data, the application will run the CryptoPlayerPrefs first.
This class utilizes the Unity API to call compiled scripts. In
this case, the script will be a jar file. In the jar file, there is
an encryption framework and a native data access function.
This framework can perform encryption and decryption with
various encryption algorithms. Developers can select an al-
gorithm or implement their unique algorithm. Then, the
framework decrypts file information and updates data by
using the native data access function. Finally, the encryp-
tion framework will encrypt the updated file.

3.2 Internet access module
There are two ways to make Internet access more secure.

Figure 6: Internet access with the encryption frame-
work.

The HTTPS server can transfer the data through a secure
channel, and the encryption framework used in the local
data access can provide one more layer security. Figure 6
illustrates the Internet access between the application and
the developer’s web service.

The HTTPS server is a standard security requirement for
the modern web application. Because of this, instruction
for how to set up an HTTPS server with a sample code
will be provided. It can help developers who lack security
experience to build their web service. Moreover, it shows
how to connect to the database and send the JavaScript
Object Notation (JSON) format to users.

In the encryption framework, the plug-in not only provides
encryption and decryption methods on the application side
but also on the server side. This plug-in contains sample
code for the server side and helps developers establishing
their web service with an extra encryption layer. The client
can encrypt the message and send it to the server. The
server can decrypt the message, perform a particular func-
tion, and send a message back to clients. This design may
help developers reduce their concern of security and devel-
opers can focus on the main functionality of the application.

3.3 Code obfuscation module
The last module is code obfuscation. This mechanism

complicates the reverse engineering attack and diverts the
attacker. It will make reverse engineering harder and re-
build the developer app. The idea of the code obfuscation
is replacing all class and method names with random char-
acters. This process makes the source code unreadable, so
attackers spend more time to find their interest codes. Usu-
ally, attackers will search keywords first when they extract
the application source code. Then, they modify a piece of
code to get products for free. If the system uses replaced
names for every class and method, it would be difficult to
understand the logic of the application.

In this plug-in, we provide an example that will use Pro-
Guard [12] with Android. ProGuard is a software tool and
could be a file shrinker, obfuscator, or optimizer. It converts
the code when developers build the jar file, and it also gen-
erates a mapping file that indicates the relationship between
the original name and modified name. When the plug-in is
made, this mapping file should be followed to call the native
API.

3.4 Server side module
The server here means the developer server, and is not an

in-app purchase server. Some developer would like to record
or track user data such as consumable products. Because of



Figure 7: Server side module

Figure 8: Proposed plug-in addressing IAP vulner-
abilities

this, the HTTPS server, the encryption framework, and the
database access functions on the server side are provided.
The HTTPS server can receive the client request and send a
response to clients. The encryption framework will be based
on the client side encryption algorithm to match the correct
encryption method.

Figure 7 shows how the web server works. When the server
receives a client request, the web service checks the message
and sends it to the encryption framework. The encryption
framework verifies the information by decrypting the mes-
sage. If the message is authenticated, it will be allowed to
pull data from the database. According to the client request,
the web service will receive the encrypted message from the
encryption framework and send it back to the client.

To summarize, this plug-in will provide a design tem-
plate to avoid common vulnerabilities when developers im-
plement their IAP processing. The plug-in allows develop-
ers to choose or implement their encryption method. In this
plug-in, one general encryption, the Advanced Encryption
Standard (AES) algorithm, will be provided. The purpose
of this plug-in is to reduce the development time, potential
vulnerabilities and workload. Figure 8 shows how the plug-
in resolves the potential vulnerabilities. The red indicates
the potential vulnerabilities. For example, the IAP wrapper
and the code obfuscation can protect reverse engineering,
the encryption Framework can prevent storage modification,
and the HTTPS server can prevent the men-in-the-middle
attack.

4. IMPLEMENTATION OF THE PLUG-IN

4.1 Implementation of the encryption module
In this module, there are three parts, data save/load, In-

ternet access, and code obfuscation in the encryption and
verification framework. The first one, data save/load, is
to prevent attackers compromising local data. The sec-
ond module, Internet access, is protecting data transferring
through the Internet. The last is code obfuscation. It can
prevent reverse engineering attacks.

Figure 9: The mechanism of purchasing products

Figure 10: The mechanism of using products

4.1.1 Secure local data accessibility implementation
The first one is saving and loading data on local devices.

There are two mechanism designs. The first one is purchas-
ing products, and the second one is using products. After
users purchase products, this module will try to build or
update local files and encryption keys based on a particular
encryption algorithm. The algorithm can be implemented
by developers or be chosen by a default one. When the sys-
tem has a local file and an encryption key, it can calculate
the hash of the local file and encrypt the hash with the key.
Then, the encrypted hash will be stored in a separate place.
Figure 9 shows the mechanism of purchasing products.

After purchasing products, users should be able to use or
consume products. When users try to use products, this
module looks for the encryption key and decrypts the en-
crypted hash. In the meantime, the system compares the
decrypted hash with the current hash which is calculated by
the current local file. If these hashes are not the same, it
means that the local file has been compromised. The system
will alert users. On the other hand, if these hashes are the
same, the product will be consumed and updated. Figure
10 shows the mechanism of using products.

Similar to the Unity API, the CryptoPlayerPrefs class is
provided to load data from local storages. The software de-
sign of the CryptoPlayerPrefs is the same with the original
Unity class, PlayerPrefs. The difference between them is
that the CryptoPlayerPrefs has an authentication mecha-
nism to verify whether the software is compromised or not.
Figure 11 shows the mapping of these classes. Figure 12
illustrates the authentication progress.

The original data access class provided by the Unity is
PlayerPrefs. This class has static methods that allow users
to use it in any place. The class can set and get values.
The set function is a dictionary structure. Developers use
a string as a key and an integer as a value. The data type
of the key can only be the string, and the value can be an
integer, a float number, or a string. In our new data access
class, we only provide getting value function because we only
allow setting value when users complete purchasing process
successfully. If the new class let developers modify the value
directly, it could cause potential vulnerabilities. According



Figure 11: The relationship between CryptoPlayer-

Prefs and PlayerPrefs

Figure 12: The authentication process

to the original data access class, CryptoPlayerPrefs is made
to contain the same static methods. Developers can use the
new one to replace the original one. Figure 11 illustrates the
method name in these classes and shows the return value
types.

Comparing both classes, the CryptoPlayerPrefs has an
authentication layer to protect application from data mod-
ifying attacks shown in Figure 12. The purpose of the au-
thentication is that software itself has to verify local data.
When an app tries to get local data, it has to check if the
data is an authenticated one. The CryptoPlayerPrefs class
gets an encrypted key from a separate place and decrypts
the key to getting the original hash. Then, it calculates the
current hash and compares it with the original one. If both
are matched, the class will return request information. Oth-
erwise, the class will pop up a warning message and does not
allow the application to get the information. Ultimately, the
CryptoPlayerPrefs can prevent file-compromising attacks,
and it is convenient to developers because the new data ac-
cess function has the same software design with the Unity
one.

4.1.2 Secure Internet accessibility implementation
For connecting to web services safely, this plug-in uses the

HTTPS to communicate with a server. HTTPS provides
an authentication website, a web server and bidirectional
encryption communication. There is another feature in the
plug-in. It provides an asymmetric encryption to encrypt
messages before the message sends to a web server. Because
the Unity releases as IAP plug-in, this plug-in will follow the
Unity software design. The web server setting process will
be discussed in the next section.

From the client side, developers give their web service ad-
dress to the plug-in. The plug-in will run a communication
process. Figure 13 presents the communication between a
client and a server. When the client purchases or consumes
a product, a connection starts. First, the system generates
hash data from a local storage file. The hash data repre-
sents the file status. If the hash data is different, the system
will know the local file is modified or compromised. Next,
the system encrypts the hash data and sends it to the web
server through the HTTPS. The web server receives the en-
crypted data and decrypts it. It also checks if the hash data
matches the information from the database. If the hash data

Figure 13: Securing the network access

is correct, the web server sends a confirmation message to
the client, and clients can use their products. If not, the
web server sends a fail message, and the client will see the
warning message.

According to the instruction of the Unity IAP function-
ality, this paper will follow its design to let developers feel
more conveniently. Classes and interfaces are implemented
with the prefix, Crypto. It means that if a Unity interface
is called IStoreController, our plug-in will be ICrypto-

StoreController. Table 1 lists classes and interfaces com-
paring with the Unity one. Methods in the new classes are
the same with the original one. Developers can pick up and
understand this plug-in quickly.

The progress of using this tool is the same with the Unity.
Developers implement the ICryptoStoreListener that con-
tains the same methods, so they do not need to update the
previous code and just replace class names. The next step
is using CryptoConfigurationBuilder to initialize an IAP
function. Then, the following step is that developers imple-
ment a purchase function and a finished call back function.
Developers can use the previous implementation because the
method name is the same, so they only need to verify the
purchasing process. If developers need to use their web
server, they have to provide the URL and set the useWe-

bVerification property to true in the CryptoConfigura-

tionBuilder. Also, they will need to implement a msgRe-

ceiver method to receive messages from their web server.
Overall, the objective of the plug-in design is reducing the
development time and preventing common attacks.

4.1.3 Code obfuscation implementation
The code obfuscation is one way to prevent reverse en-

gineering attacks. It modifies class, property and method
names when developers release their application. Because of
the random name of the code, it is hard to understand the
logic behind programs. Therefore, the program can reduce
compromised possibilities. An example will be provided for
Android and use ProGuard as a code obfuscation tool. Pro-
Guard is a JAVA based tool. It can create a compact code
for developers and make programs and libraries more diffi-
cult to reverse engineering. This tool will be used to build
a part of this plug-in.

Android Studio [6] will be used as the integrate devel-
opment environment (IDE). Android Studio is the official
IDE for Android development provided by Google Inc. The
ProGuard is a standard tool in this IDE. How to use the Pro-
Guard is quiet simple. Developers open the build.gradle file
and modify the minifyEnabled to true. This step can turn on
the ProGuard function. When Android Studio builds the ap-
plication, it will apply the ProGuard. For more setting, de-
velopers can manipulate the proguard-project.txt file. This
file can customize the ProGuard process. For example, if de-



Table 1: Classes and Interfaces mapping
Attack Type iOS Android

Class ConfigurationBuilder CryptoConfigurationBuilder
GoogleStoreController CryptoGoogleStoreController

InitializationFailureReason CryptoInitializationFailureReason
Product CryptoProduct

ProductCollection CryptoProductCollection
ProductDefinition CryptoProductDefinition
ProductMetadata CryptoProductMetadata

ProductType CryptoProductType
PurchaseEventArgs CryptoPurchaseEventArgs

PurchaseFailureReason CryptoPurchaseFailureReason
PurchaseProcessingResult CryptoPurchaseProcessingResult

Interface IGoogleStoreConfiguration ICryptoGoogleStoreConfiguration
IStoreConfiguration ICryptoStoreConfiguration

IStoreController ICryptoStoreController
IStoreListener ICryptoStoreListener

Figure 14: ProGuard setting

Figure 15: The ProGuard mapping file

velopers want to keep a particular class that is not allowed
to change the name, they can add the exception in this file.
Figure 14 represents how developers enable the ProGuard
tool.

After developers build their application, ProGuard will
generate a mapping file. This file indicates information be-
tween the original name and the modified name. Figure 15
shows the mapping file. For instance, the property, mActiv-
ity, in the IABBinder Class, is modified to d. The method
checkFile() becomes b. In this paper, an application will
not be built. Only a library will be built which is the jar file
for Unity plug-in.

4.2 Web service implementation
A web service will be implemented by using Python and

toolkits, such as Flask and SQLAlchemy. On the other hand,
an encryption framework is applied to match the client en-
cryption algorithm. The Flask is a micro web server frame-

Figure 16: Web service implementation

work to host the HTTPS server and provides web services.
The SQLAlchemy is an object relational mapper to com-
municate with databases. The system consists of the Linux
server and MySQL database system. The database contains
two tables as a default setting to record clients’ informa-
tion. The encryption algorithm for this demonstration is
RSA, an asymmetric key cryptosystem. Developers can use
it directly or integrate their encryption algorithm. Eventu-
ally, web service functionalities will be implemented by using
Python on the web server. Figure 16 illustrates the server
implementation.

The Flask, a micro Python framework, can handle web
request and response function. It can build an interactive
website, but only be used as a web service that only re-
ceives, processes and returns the message. When the web
service receives client messages, it passes the message to the
encryption framework. Since RSA is used here, the system
will use the private key to decrypt messages. The encryp-
tion framework system receives decrypted messages. If the
message is an authenticate one, it will be passed to the next
step. Otherwise, the system gives a fail message to the Flask
and clients will receive a warning message. After the system
verifies the message, it accesses the database to get, set or
update the user’s data. Then, the system will give the result
information to the Flask, and the Flask returns the message
to the client.

On the database design, two tables are provided. The first
one is a user table. It records user information, such as user-
names, passwords, and data create time. The information
in this table can authenticate incoming requests. Based on
different clients, the web service has different responses. For



Figure 17: The demo game play

example, if a client tries to connect the server with a correct
username and a wrong password, the web service will reject
this client’s request and respond a fail message. If the client
provides the correct username and password, the system can
authenticate this request and authorizes this request to con-
nect to the database. The second table is a SHA HASH
table. It contains hash information with a particular user
and the last update time. When the system authorizes the
request to check database information, it compares the infor-
mation between the request hash and the database hash. If
they are the same, the system will respond with the verifica-
tion message. Finally, the client can be allowed to consume
or purchase products.

5. EVALUATION OF THE SECURE IAP PLUG-
IN

The evaluation method will integrate the plug-in in a
demo game made by Unity 3D engine. The demo game
is an action tower defense game and builds on an Android
device. It has a basic IAP function to purchase consumable
products. Several different levels of attacks will be provided
to measure how difficult existing attacks can compromise
developers’ application. The attacking scenarios are data
compromise, men-in-the-middle, and reverse engineering.

5.1 Addressing the data compromise attack
The following will evaluate whether the plug-in can pre-

vent data compromise attacks. Figure 17 illustrates the ba-
sic game play of the demo game. Users represent a blue ball
and red cylinders are enemies. Users should avoid enemies
passing the left line of the screen. If an enemy passes through
the line, players will reduce one life. The game is over when
the life becomes zero. However, players can use the heal
button to increase their lives. According to this game play
design, the product in this demo game is HEALS. Users can
purchase five HEALS, fifteen HEALS, or a hundred HEALS.
The first evaluation will show the comparison between the
demo game without the plug-in and with the plug-in.

First of all, the demo game is built without the plug-in to
demonstrate data compromising attacks. The demo game
shows a purchasing product process through the Unity IAP
package. Users can click which product they want to buy,
and the Google Play Store will confirm this purchase order.
Figure 18(a) and 18(b) show these two steps. After the pur-
chase process finishes, users can obtain the HEALS in this
demo game. Figure 18(c) represents this process. Attackers

can compromise the data file by modifying the data files that
contain purchase information from any product types. They
can compromise the data files by using the ADB (Android
Debug Bridge) command [1]. Figure 18(d) demonstrates
the modification of the local data file, and Figure 18(e) re-
veals that the product, HEAL, increase to nine hundred and
ninety-nine.

Next, the demo game is built again and integrated the
secure IAP plug-in that we developed. The steps of data
compromising processes are the same with the previous one.
After attackers modify the data file, the plug-in will detect
the difference between the original file and the modified one.
Therefore, the program will know that the data file is not
an authenticate file. Figure 19 illustrates the warning in the
game. When the plug-in detects the application is compro-
mised, it will not allow clients to use the product.

5.2 Addressing the man-in-the-middle attack
The scenario is that a user tries to consume the HEAL

product to obtain the LIVES. The WireShark [15] is used
to monitor the Internet traffic. If plaintext information can
be received, a proxy server will be set up by using Charles
[2] and replay the attack.

First, the demo game is built without the plug-in and uses
a regular HTTP server. When clients consume products, the
WireShark can get the Internet information. Figure 20(a)
shows internet traffic. The web server IP is 192.168.58.1,
and the client IP is 192.168.58.101. The WireShark can col-
lect packets between them and reconstruct the information.
Figure 20(b) represents the rebuild information. The infor-
mation can be got as plain texts. Attackers can analyze the
request and response information. In this case, Attackers
can know the server responds the true status and clients
are authorized to consume products. It means that attack-
ers can try to modify the information by using the proxy
server. Figure 20(c) illustrates the Charles proxy server try-
ing to modify the web server response. The Charles proxy
can set up breakpoints to suspend Internet connection and
modify packets. In this demo, attackers can always modify
the response status as true. That means that even though
the server does not authorize users, users still can consume
the product. Therefore, if the demo game is built with-
out our plug-in, the game will suffer the men-in-the-middle
attack. Next, the demo game integrated our plug-in and
uses the HTTPS server. The man-in-the-middle attack is
repeated again. The WireShark monitors the Internet and
tracks packets between the server and the client. Figure
21(a) shows the packets that the WireShark caught. Figure
21(b) illustrates the reconstructed information. Since the
HTTPS server is used, the reconstructed packet is encrypted
information. It is hard to analyze packets and complete the
man-in-the-middle attack. Eventually, the only way to con-
sume products is obtaining the web service’s authorization.

5.3 Addressing the reverse engineering attack
The purpose of preventing the reverse engineering is to

make attackers hard to understand program function. The
Android Application Package (APK) is a compressed file.
Unzip command can unpack the APK. Then, the reverse
engineering attack can be duplicated.

The demo game is first built without using the code ob-
fuscation. When attackers get an APK, they can unzip the
APK file and get a classes.dex file. The dex2jar tool [13]



(a) The product menu in the demo game

(b) The confirmation from the Google Play Store

(c) The product shows in the demo game

(d) Compromise the data file

(e) Successful to compromise the demo game to obtain free products

Figure 18: Data compromise attack in the demo
game without the plug-in

Figure 19: The demo game with secure IAP plug-in
and the warning message

can convert the classes.dex file to a classes-dex2jar.jar file.
When attackers obtain the jar file, they can use the JDI-
GUI tool [3] to read the source code. After attackers realize
the program, they can modify a part of the code and re-
build the modified one. Ultimately, the attacker can avoid
all authentication process to get products for free. Figure
22 illustrates the source code from the reverse engineering
attack.

Next, the application is built with code obfuscation, and
duplicates the reverse engineering attack. According to the
source code from the revers engineering, the part with most
content is replaced to simple characters. For example, the
member variable, the mActicity, is replaced to d. The Iab-

Helper type is replaced to d. The source code becomes hard
to understand. Because of the difficulty of understanding,
attackers have to spend a significant amount of time to an-
alyze the source code. Developers’ application will be much
safer to prevent the reverse engineering attack.

6. RELATED WORK
Since the growth of the Android marketplace, both mali-

cious attackers and security researchers have dedicated their
lives to compromise and protect products of in-app pur-
chase. Attackers first access sensitive data through appli-
cation leaks of Android permissions, but researchers provide
an Android framework, which can monitor an Android ap-
plication to provide a proper permission setting[5]. Because
directly compromising an application is not efficient, attack-
ers focus on the market, Google Play. They made a com-
promised Google Play app to bypass the in-app purchase
process [14]. After Google realizes this attack, a guideline
is provided to prevent this attack by using the signature
authentication process [7]. However, attackers develop an
automatic attack tool to modify the signature at runtime by
using a dynamic Dalvik instrumentation approach [10]. On
the other hand, researchers proposed a test tool of the signa-
ture verification process to avoid the attack [8]. The previous
security researches focused on applications and Google Play
process and only proposed solutions on the Android opera-
tion system. However, this paper not only considers those
issues but also deal with other problems such as device data
access and data transmission between clients and servers on
different platforms.



(a) The WireShark monitors the Internet packets

(b) The WireShark reconstructs the information

(c) Modify the response information by using Charles proxy

Figure 20: The man-in-the-middle attack when us-
ing a regular HTTP server

(a) The WireShark monitors the Internet packets

(b) The WireShark reconstructs the information

Figure 21: The man-in-the-middle attack when us-
ing HTTPS server

Figure 22: Reverse engineering attacks without code
obfuscation



Figure 23: Reverse engineering attacks with code
obfuscation

7. CONCLUSION AND FUTURE WORK
Nowadays, many attackers are trying to compromise mo-

bile applications and take products from developers without
permission. They use different technologies to break the
IAP process, which is the new business model of directly
purchasing products in the application. This new design al-
lows users to buy extra content or virtual goods. However,
most independent developers and small-scale companies do
not have enough resources to resolve the security issues. In
this paper, a potential solution to prevent some common at-
tacks, such as data compromise attack, men-in-the-middle
attack, and reverse engineering is provided.

To demonstrate the solution, a demonstration app (demo)
was built. The Unity Engine was used to create the demo
since the population of the Unity community is increasing
and is close to fifty percent of the mobile app industry. The
demo is an action tower defense game, a typical case in the
industry. It has essential functions, such as gameplay, a
product menu, and in-app purchases. This demo was used
to show the potential vulnerabilities of in-app purchases and
to duplicate attacks. The paper is a plug-in for Unity, which
was later integrated into the demo to show the result of our
research.

There are three methods proposed to avoid these attacks.
The encryption framework is designed to prevent data com-
promise attacks. This framework checks the local data file
by using the hash function and encryption. Before users pur-
chase or consume products, the system first verifies the data.
If the data is not verified, the system will not allow users to
purchase or consume products and vice versa. The next
solution for man-in-the-middle attack is using the HTTPS
server. Today, the HTTPS server is a standard secure Inter-
net communication protocol. A simple web service is pro-
vided by the Python micro-framework, Flask. This web ser-
vice can give independent developers the concept to set up
and design their web server. It also shows how to verify
the incoming web request and how to connect the database.
Moreover, it can be used directly if it matches developers’
requirements. The last well-known attack attempted to be
solved is reverse engineering. The solution provided is code
obfuscation. Reverse engineering of the software is the pro-
cess of decomposing the application product, manipulating
the application content and rebuilding the product based
on the original information. This means that attackers can
bypass the regular in-app purchasing process to get con-
tent or virtual goods. The code obfuscation modifies the
source code by replacing readable words with unreadable

characters. In the program, developers usually use mean-
ingful names to declare the variables or functions, but the
code obfuscation will replace all names with random combi-
nation characters. Even though attackers extract the source
code, they will encounter the obfuscated program. Because
of this, using reverse engineering makes it hard to attack
this application.

8. REFERENCES
[1] K. Boss. ”android - adb backup/restore- adb extractor

(abe) - extracting adbs with openssl”, 2014.

[2] Charles. “charles 3.11.5”, 2016. Accessed July 29, 2016.

[3] J. Contributors. “java decompiler”, 2015. Accessed
July 29, 2016.

[4] Cydia. “how to install and use localiapstore ios 8.1.1 –
ios 8.1.2 to get free in app purchases.”, 2015. Accessed
January 5, 2015.

[5] B. Davis, B. Sanders, A. Khodaverdian, and H. Chen.
I-arm-droid: A rewriting framework for in-app
reference monitors for android applications. In
Workshop on Mobile Security Technologies (MoST),
2012.

[6] Google. ”android studio 2.1”, June 2016. Accessed July
29, 2016.

[7] Google. In-app billing security and design, 2016.

[8] H. Kim and S. won Kim. Securing android in-app
billing service against automated attacks. In
International Journal of Security and Its Applications,
2016.

[9] Millz. “free in app purchases android.”, 2013. Accessed
January 5, 2015.

[10] C. Mulliner, W. Robertson, and E. Kirda.
Virtualswindle: An automated attack against in-app
billing on android. In Proceedings of the 9th ACM
symposium on Information, computer and
communications security, 2014.

[11] K. Pitakronachai. “ios games money hack compilation
tutorial.!!! non jailbreak devices.”, 2013. Accessed
January 5, 2015.

[12] ProGuard. “proguard version 5.2”, 2015. Accessed July
29, 2016.

[13] pxb1988. “dex2jar”, 2016. Accessed July 29, 2016.

[14] D. Reynaud, E. C. R. Shin, T. R. Magrino, E. X. Wu,
and D. Song. Freemarket: Shopping for free in android
applications. In ISOC Network and Distributed System
Security Symposium (NDSS), 2012.

[15] WireShark. “wireshark 2.0.5”, July 2016. Accessed
July 29, 2016.


