
Security Analysis of Mobile Money Applications on Android

Hesham Darwish

California State Polytechnic University, Pomona

hidarwish@cpp.edu

Mohammad Husain

California State Polytechnic University, Pomona

mihusain@cpp.edu

ABSTRACT
Mobile Money Applications are thriving mainly due to the ease and

convenience it brings to people, where it offers transferring money

between people’s bank accounts/cards with a few taps on a

smartphone either in the form of Mobile Banking or Mobile

Payment Services. However, a key challenge with gaining user

adoption of mobile banking and payments is the customer’s lack of

confidence in security of the services, and that makes a lot of sense

because whenever people grants a service access to their

debit/credit cards or bank accounts that automatically opens the

door for identity thefts, fraudulent transactions and stolen money.

Add to that, the fact that already people and developers are not

giving much attention to the security aspect of the applications.

This paper consists of two parts, an intensive security analysis on a

selection of different mobile banking and mobile payment

applications on Android platform where 80% of the selected

applications were found not following the best security measures,

and also a thorough step-step Android security testing guide in the

form of this paper to ease the process of security testing any android

application to be used by developers, ethical hackers, and anyone

interested in testing the security of any application.

CCS Concepts

• Security and Privacy➝ Systems security ➝ Operating

systems security ➝ Mobile platform security.

Keywords

Mobile Security; Mobile Applications Security; Android; Android

Security; Android Applications; Mobile Money Applications;

Security of Mobile Money Applications.

1. INTRODUCTION
Mobile Money Applications has been a hot topic in the last few

years and is expected to continue like that as all the tech is moving

towards mobile. However, unfortunately, In the face of accelerating

user demand, businesses aren’t validating that their apps are safe

and secure and they are more dragged by are the speed-to-market

pressure as well as the need to maintain a high level of user

experience. According to a Security Intelligence study shown in [1]

that was done on 400 well known organizations (40% Fortune 500

companies), 40% of them aren’t even scanning their code for

security vulnerabilities. On top of all these applications are the

Mobile money applications who are basically dealing with high-

level private financial and confidential information, where the

security has to be top notch as any vulnerabilities or threats can’t

be accepted as this is were the ultimate security is needed. So by

targeting the mobile money applications, this paper is indirectly

targeting all the other mobile apps. Security in general has been a

growing concern lately especially with the evolution of mobile,

cloud, and Internet of things and what makes it more challenging is

the almost daily vulnerabilities found in operating systems,

applications, and websites. In this paper, a detailed security analysis

was done on 25+ mobile money applications by using various tools

and frameworks which made it easier to do the second part of the

paper which is a thorough step-by-step guide for Android security

testing that can be used on any android application not necessarily

mobile money applications. This paper focuses on Mobile Money

Applications for multiple reasons that will be addressed in this

chapter, and Android OS was used as our target platform in this

paper due to it being the most used OS in the world and the one

with more vulnerability history as of July 2016. This paper

categorizes mobile money applications into mobile payment

services and mobile banking. And categorizes the security analysis

into static and dynamic vulnerability analysis.

1.1 Why Android?
According to the Q2 2015 statistics done by IDC, Android is

dominating the smartphone market with a share of 82% as of

December 2015 while iOS comes second with a share of 13.9% [2].

And that on its own is an enough reason why this paper is

performing the analysis on Android but it’s not the only reason.

Android ecosystem has become massively fragmented in the recent

years with uprising number of manufacturers, each having its own

Android OS flavor, which means each having potential different

vulnerabilities on top of any core Android Issues which is the

complete opposite in the iOS side where Apple is making sure to

have a more compact closed ecosystem. However, iOS is still

suffering from mobile security issues, the android suffering is much

deeper. Moreover, Android being an open source based on Linux

makes things much easier to work with, so extracting the source

code and searching the files and even having insecure code in apps

is far easier and common in Android.

Figure 1. Mobile Money Applications

1.2 Why Mobile Money Applications?
As shown in figure 1, Mobile Money Applications is the big

umbrella that contains mobile payment applications, mobile

wallets, mobile banking applications. And there are some

applications that lay between the mobile payment and mobile

wallets like Android Pay, Google Wallet and Apple Pay. The

mobile money applications in general have became ubiquitous and

essence, and it is on the rise due to the convenience and ease it

brings to people, as with one press on their phone; people can pay

their bills, transfer money to a friend, transfer money to a bank

account or even buy groceries and do shopping. It will probably

come a time soon where most people won’t carry wallets, and do

all their transactions through their phone. Currently, providing

payments through apps has been dramatically adopted by a lot of

people especially younger generations. Mobile payment services

accounted for $8.7 billion worth of U.S. transactions last year, and

expected to grow by 210% in 2016 according to [3]. The downside

of all that is that people are not thinking about the other half of the

cup, where they are actually putting themselves in risk for identity

theft, fraudulent transactions and stolen money if these apps are not

secure enough to hold their data and to perform these financial

transactions. And as mentioned in [4] by Jalaluddin Khan et.al

Android users are not aware that their smartphones are also as

vulnerable as any computer, and I’m sure that it goes the same for

iOS users.

Figure 2. Analysis Process

1.3 Analysis Process
Figure 2 shows the analysis process created and followed in this

paper, the process started by the static part; beginning with the

automated security testing which produces an overview and a

bigger picture of the potential vulnerabilities. Then the next step is

to validate some of these potential vulnerabilities and identify any

other vulnerabilities found by reverse engineering which was done

by the Apktool that converts the application to smali byte code

which is a human readable byte code and produces the android

manifest xml file which has all the permissions granted by the

application. Then the Moblizer framework was used which

searches for vulnerabilities in the extracted source code. After that,

the dynamic analysis phase take place to validate how secure is the

app while it is running and how is it protected from potential MITM

(man in the middle) attacks, and to monitor how the app

communicates with the server. All the results from the static and

dynamic testing are then analyzed and collected together to produce

the final full security testing result for all of the selected apps.

1.4 Device Used
The device used in the analysis is a Nexus 7 tablet that has android

version 5.1, and it’s important to note that Nexus devices are

probably the most secure devices on Android with less

vulnerabilities on the OS level than any of the other Android

devices, as the android OS is raw and not customized like in most

of the other manufacturers.

1.5 Selected Applications
The criteria of the choosing the applications as following:

1. Choosing some market leading mobile banking and

mobile payment apps.

2. Choosing apps with low and high download rates.

3. Choosing some old apps in the market that haven't been

updated recently that we expect to find some

vulnerabilities in.

After digging into the Android Play Store, the following list of 26

apps were chosen to be included in the analysis paper. Table 1

shows all the selected apps with the version used in the analysis,

the date where that version was added, the download count, and the

sector that the app fits into either banking, payment or money

wallet.

App Name Version Download Count Date Added

Money Fellows 1.1.2 100+ 07/10/2016

Venmo 6.31.1 1,000,000+ 07/12/2016

Square Cash 2.12.3 1,000,000+ 07/13/2016

Transfer Wise 2.7.6 500,000+ 07/10/2016

PayPal 6.4.2 10,000,000+ 06/30/2016

Dunia Mobile 1.1.0 10,000+ 12/06/2015

Pocket Moni 2.3 5,000+ 09/02/2015

Phone Cash 1.2.3 1000+ 07/12/2016

Xoom 4.2 1,000,000+ 05/12/2016

Mobile Money 1.3.0 10,000+ 05/09/2016

Easy Pay 3.2.4 50,000+ 10/13/2015

EPE Mobile Pay 1.1.2 10,000+ 05/15/2016

Wells Fargo 5.1.0.74 10,000,000+ 06/13/2016

CIB Smart Wallet 1.0.52 10,000+ 03/06/2016

QNB 2.3 50,000+ 05/05/2016

HSBC 1.5.14.0 1,000,000+ 07/07/2016

Chase 3.29 10,000,000+ 07/06/2016

SAIB 2.9.2 50,000+ 04/27/2016

Arabi Bank 2.7 100,000+ 06/30/2016

AGB 1.1 10,000+ 11/12/2014

AlAhli Bank 2.4.0 500,000+ 03/10/2016

eBLOM Bank 1.0.19 10,000+ 01/18/2016

ENBD 1.0.4 10,000+ 02/10/2016

Ma7fazty 1.0.61 500+ 06/22/2016

Google Wallet 15.0 1,000,000+ 06/08/2016

Dynamic Analysis: Network Intercepting

Charles Proxy Burp Suite

Static Analysis: Reverse Engineering

Apktool Moblizer

Static Analysis: Automated Security Testing

AndroBugs

Android Pay 1.4 10,000,000+ 06/11/2016

Table 1. Selected Applications

2. RELATED WORK
In this section, some related work in the android applications

security field are presented that this paper was impacted by them.

Diana Gabriela et.al [6] highlighted how smartphones are used in

daily activities like mobile banking and mobile payment services

and then went on to describe some mobile threats and attack vectors

in android, outlining the variety of sources of intentional threats,

and different motivations. Then after that the paper digs deep into

the structure of an android application and explains in detail the

different components of an apk. Moreover, the authors presented

an analysis of one sample of a remote access Trojan in a form of an

application, and they proved how a simple application can collect

private information from a phone and access passwords, etc. [6].

This paper main motive and idea was to show the important of

permissions in apps and how some applications will request all the

permission although it’s not needed, and how it can affect the

security of the information on all devices including other

applications on the phone. Adrienne Porter Felt et.al in [7] went

deeper to analyze the issue of android permissions, as they built a

static testing tool to detect over privileged applications by

determining the set of APIs the application is using then matching

the API calls to permissions [7]. They applied the tool that they

created on a set of 940 applications and they found out that one-

third are over privileged.

Erika Chin et.al. [8] saw the importance of securing the inter-

application communication so in this paper they talk about the

intent-based attack surfaces, and how sending an intent to the

wrong application can leak user information. In this paper they

created a tool that detects application communication

vulnerabilities and then they tested on a set of 20 applications, 60%

of these applications appeared to be vulnerable as they found 34

vulnerabilities in 12 of these applications [8].

William Enck et. al [9] is one of the few papers found that has the

same direction like this paper. The authors in [9] had a target of

better understanding smartphone application security so they

studied 1100 free android applications. They designed and

executed a horizontal study of smartphone applications based on a

static analysis of 21 million lines or code [9]. They retrieved the 21

m line of code by implementing a Dalvik decompilier “ded” which

performs DVM to JVM bytecode retargeting, and translating class

and method structures [9]. The authors analyzed the 21 million lines

of code retrieved using automated tests as well as manual

inspection. The results of this study showed a wide misuse of

privacy sensitive information, like IMEI, IMSI that were used in

account numbers or even in session authentication token or as

device fingerprints [9]. They also found out that ads and analytic

network libraries are available in 51% of the applications included

in the study. The study found out some android-specific

vulnerabilities which include leaking information to logs, leaking

information via IPC, unprotected broadcast receivers, intent

injection attacks, delegating control where apps unsafely delegate

actions to other applications (found in 116 applications, 10.5%),

null checks on IPC input, SD card use which means that the app

can read or write any other application’s data on the SD card (found

in 251 applications, 22.8%) [9]. The unique thing about this paper

that it did not only showed the existence of dangerous functionality

but it showed how it occurred within the context of the application.

They indicated that they had some challenges because of the

implementation of code obfuscation by some of the apps that made

them unable to test these applications.

In all the prior presented work, a lot of findings were found about

mobile applications and android applications in general, random

applications were tested and their security measures were analyzed

and documented. But this paper is most similar to the work done by

Bradley Reaves et. al. [10], where that paper was the first detailed

comprehensive security analysis of mobile money applications or

branchless banking applications as called in the paper [10]. The

focus of this paper was to analyze the security of mobile

applications in the developing world so after running some

automated tests, they picked 7 android applications from Brazil,

India, Indonesia, Thailand, and the Philippines [10]. The authors

applied reverse engineering on the applications in order to have a

deep insight into the application behavior and client/server

protocols. The results they got in their research was one of the main

motives of this paper, as they found 28 significant vulnerabilities

across the seven applications [10]. They also found out that the

automated analysis tool that they used “Mallodroid” failed to detect

accurate results compared to their manual inspection. Moreover,

The work of Bradley Reaves et. al. also investigated the security

guarantees and the severe consequences of smart phone application

compromise in mobile money applications, so they went through

all the terms of service “ToS” of all the 7 investigated applications

and found out that most apps hold the customer solely responsible

for most forms of fraudulent activity [10].

This paper focuses on Mobile Money Applications can be

considered an extension of the work done by Bradley Reaves et al.

[10]. But it differs a lot in the whole analysis process starting from

the size of the targeted applications in the analysis growing from 7

applications to 26 applications, this paper is more concerned about

the most used mobile money applications in the market. Apktool is

the only tool used in both in papers while this paper uses an

automated static analysis tool that was built on top of the core of

Mallodroid but yet it is much more advanced and it gives more

accurate results. This paper includes a dynamic analysis phase that

wasn’t included in most of the prior research where all the selected

applications where tested while running on MITM attacks, and that

gave more accurate results about the SSL/TLS implementation of

the applications. Moreover, this paper includes a step by step easy

to follow guide to test any android application.

3. AUTOMATED SECURITY TESTING
This part will present the tools, process and results of the automated

security testing that was done on the selected applications. The

automated security testing is a part of the static vulnerability

analysis covered throughout the paper, and it is importance comes

from that it gives an overview on where to look for vulnerabilities

in the app. AndroBugs Framework was used as the automated

security testing tool, and it was chosen despite that it doesn’t have

a 100% accuracy because of how it works, as it basically searches

the code for the known common problems by following a sequence

of search on compromised methods or functions that it is stated that

it’s insecure to use in the android developer documentation. This

chapter will start with giving a brief on AndroBugs then showing

the process of using it, then presenting the results of the automated

security testing.

3.1 Automated Security Testing Tool

AndroBugs framework is an open source android application

security vulnerability scanner, it is developed by Yu-Cheng Lin and

was released in November 2015[11]. What makes AndroBugs

special compared with other vulnerability scanner tools is that

AndroBugs tries to emulate the operation of an app, and considers

the attack vectors through which those weaknesses would be

exploited, instead of just scanning the code for weak spots.

AndroBugs is written fully in Python and it’s considered a static

analysis tool that checks for a number of known common

vulnerabilities in the android apps, it also checks if the code is

missing best practices and checks dangerous shell commands (su)

[11]. The AndroBugs tool provides a severity level for each issue
found starting from critical, warning, notice and info [11].

3.2 Automated Security Testing Process

One of the main advantages of AndroBugs is that it doesn’t need

any installation in Unix, you just download the folder and start

using it if you have python 2.7 or later installed. It’s probably the

easiest tool in the market that you can use for android security

testing. The first and only step needed before starting to use it is to

have the .apk of the application, and this can be retrieved easily by

downloading an app called “Apk Extractor” on your android

device and then transferring the .apk to your device through USB

or email. Then placing it inside the same folder of AndroBugs. In

order to run the AndroBugs Framework all you need to do is:

python androbugs.py -f [APK file]

The AndroBugs produces a full report with the application name in

a folder created called Reports. Below are some screenshots of how

the report looks like and what kind of vulnerabilities can find.

AndroBugs starts by giving a brief on the application that is being

tested; name, version, etc. Then it goes on to find vulnerabilities

and give a brief on them. One of the best features about AndroBugs

is that it gives you all the URLs that is found not being under SSL,

which might be a vulnerability if any of these URLs have any kind

of sensitive information.

3.3 Automated Security Testing Results
All the selected applications have been security tested by

AndroBugs tool to get an initial overview about where to look for

vulnerabilities, while it appeared that the results given by

AndroBugs gives in most cases a good idea about what how the

application is built and where you can have potential

vulnerabilities. It was really helpful as a static vulnerability

analysis tool and in order to know where to look when going to the

next static vulnerability analysis tool; Reverse Engineering.

The Vulnerabilities found in all apps were the following:

Application Sandbox: It’s mainly because AndroBugs found that

the application being tested is probably using “MODE_WO-

RLD_READABLE"or "MODE_WORLD_WRITEABLE", which

makes the application vulnerable under M2 – Insecure data storage.

Runtime Command: This is because AndroBugs found in the

code a critical function “Runtime.getRuntime().exec(“…”)”.In this

function a user can provide an input that will cause a shell to run

and then change commands inside it.

Fragment Vulnerability: This is because AndroBugs found in the

code that a ‘Fragment’ or ‘Fragment for ActionbarSherlock’ used

which has a severe vulnerability on devices with android version

prior to 4.4. The use of this application on an old android device

will be vulnerable for any attacker to execute some code that can

break the Android Sandbox which means accessing sensitive

information that shouldn’t be accessible by the application itself.

SSL Certificate Verification: This means that this application

doesn’t check the validation of SSL Certificate, that means it allows

self-signed, expired or mismatch CN certificates for SSL. This is

definitely a critical vulnerability because it allows attackers to do

MITM attacks.

SSL Implementation: This means that this application allows self-

defined ‘HOSTNAME VERIFIER’ to accept all common names.

This means that any attacker with a valid certificate will be able to

perform MITM attacks.

Implicit Service: This means that this application is using an

implicit intent to start a service, which is really risky because the

responding service can’t be identified and the user can’t see which

service.

WebView Vulnerability: This means that AndroBugs found in the

code of the application the method “addJavaScriptInterface” which

is a vulnerability that can be used to allow JavaScript to control the

application in devices running Android versions prior to 4.2.

Android Manifest: This indicates that AndroBugs found that this

app has very high privileges, and that AndroBugs found that the

android permission “Mount_Unmount_FileSystems” is used by

this application which is not justified as this permission allows

mounting and un mounting file systems for removable storage and

it is indicated in the android developer’s website that it’s not for the

use of third party apps.

KeyStore Protection: This means that AndroBugs found that this

application is not protecting it’s KeyStore properly as it seems that

it is using byte array or a hard-coded certificate info to do SSL

pinning.

During the process of running all selected applications on

AndroBugs, it was found that the applications owned by Google

(Android Pay and Google Wallet) had an additional layer of

protection that doesn’t exist in any other application, where the .apk

requires a string argument of length 4 to be unzipped, which can be

brute forced for sure but it makes it harder to reverse engineer this

application. Table 2, shows a full summary of the vulnerabilities

found in all the selected applications after performing the security

testing using AndroBugs.

4. REVERSE ENGINEERING
Reverse Engineering is defined as the process of extracting

knowledge or design information from anything man-made. The

idea behind it is ancient, it has been known for ages that

disassembling anything will make you understand it more, analyze

it, and you could even tweak it to perform a different task. Reverse

Engineering is used heavily in the computer security industry for

virus and malware analysis, vulnerability analysis, binary code

auditing, and exploit development. Reverse engineering was

implemented in this paper as a second part of the static vulnerability

analysis after automated security tested, the sequence followed to

reverse engineer an application is shown in figure 3.

 Table 2. Automated Security Testing Results

Figure 3. Reverse Engineering Process

While reverse engineering can be done on its own as a static

vulnerability analysis method, I used reverse engineering in this

paper after performing the automated security test so I would have

an idea on where I should be looking and for what. In general,

reverse engineering is used to see how the developers built that

specific application and how they dealt with the crucial security

tasks and requirements. These are some examples on what we

should be looking for when using reverse engineering in security

tests on Android:

Database Connection, db name, or db password, any hardcoded

usernames or passwords that can be used to access the database or

the application, the APIs used by the application to see if any of

them are compromise, or the API key, and to search on a known

vulnerable method if it’s used in the application.

This part will address the tools used in Reverse Engineering, and

then the process followed to find vulnerabilities in the selected

applications after retrieving the source code, and finally will go

over the results obtained from the reverse engineering and

comparing them with the results achieved by the automated

security testing.

4.1 Reverse Engineering Tools

4.1.1 Apktool
It is a static security analysis tool for reverse engineering 3rd party,

closed, binary Android apps. It is written in java and It can decode

resources to nearly original form and rebuild them after making

some modifications. It also makes working with an app easier

because of the paper like file structure and automation of some

repetitive tasks. The powerful thing about Apktool that it can not

only used for reverse engineering, it can be used in re-engineering

and this means that an application can be reverse engineered and

the code can be edited in a malicious way and then repacked again

in a new .apk that can be placed on third party application stores

and now everyone downloads it will be in danger [12].

4.1.2 Moblizer
It is a static security analysis framework that is built on top of

Apktool, it’s simply a 70 lines python script that just can help in

saving time and effort. It basically searches in the code produced

by the apktool for certain words that can indicate a database

connection, db-name, password, FTP, API, etc. I personally edited

this framework by adding some keywords that gives it a better

functionality, and was helpful in my analysis.

4.1.3 Dex2jar
Dex2jar is a tool that converts Dalvik bytecode (DEX) to java

bytecode (JAR), so it takes as an input the .apk and produces a .jar

file that can de decompiled by any java decompiler.

4.1.4 JD-GUI
This is the java decompiler used to convert the java bytecode (JAR)

into the readable java source.

4.2 Reverse Engineering Process
The process created and followed during the reverse engineering

part of the paper was initially solely built on Apktool which

basically takes an apk file and delivers the source code in Smali

which is an easy to understand language.

The apktool is a powerful reverse engineering tool that needs no

kind of installation, after downloading the apktool jar file, and

making sure that java is installed on the computer; the following

command is used to retrieve the source folders and code.

java -jar apktool.jar d TransferWise.apk

In the initial process, I performed manually checks on the code of

each and every application tested which is definitely time

consuming so I thought about building a script to search for

keywords in the smali code but then I came across the Mobilizer

framework.

The moblizer framework requires any python 3.x version, and it’s

used by downloading the Moblizer.py to the working directory

along with the apktool and the apk file that is needed to be tested.

The idea of mobiizer is that it searches in all the files for any

sensitive keyword such email, IP, username, db-name, password,

etc. And it also provides a Manifest permission details at the end of

each output

Python3 /path/to/moblizer.py /path/to/your. Apk

I edited the Moblizer script by adding keywords to its search list

and making it executable in the way indicated above. The output is

usually about 2 pages long but it saves a lot of time since you don’t

need to open a lot of files to find the potential vulnerabilities.

The process I followed was to double check all the results that was

achieved by AndroBugs by adding all the keywords needed to the

Mobilizer list.

Dex2jar and JD-GUI were also used to extract the java source code

from the apps. It appeared that some of the apps have a layer of

protection on their code (code obfuscation) which makes the code

real hard to understand, it makes it unreadable, and that’s why I

used the apktool to reverse engineer the selected applications to

smali which is a readable byte code and that was done by using the

advantage that most applications do not do byte code obfuscation.

4.3 Reverse Engineering Results
All the selected applications have been reverse engineered by

Apktool and Moblizer and the full source code was extracted. All

the results got from AndroBugs were double checked in this second

part of static vulnerability analysis. Every application was first

reverse engineered by Apktool and the code was checked in all the

places identified by AndroBugs.

Table 3 Shows the reverse engineering results that was achieved by

manually checking the source code and by using Moblizer

framework. The SSL verification, URLs not under SSL, and SSL

checking wasn’t checked in Reverse Engineering as that will be

double checked in the dynamic analysis part.

These results indicated that the results achieved from AndroBugs

were more than 70% correct, which is reasonably good since it’s

just a quick automated test. Any vulnerability found by AndroBugs

but couldn’t be found in the code then it was deleted from the

vulnerability.

Table 3. Reverse Engineering Results

5. DYNAMIC ANALYSIS: NETWORK

INTERCEPTING
Network Intercepting is the dynamic vulnerability analysis part in

this paper and I believe that it’s crucial for any application to

undergo a dynamic vulnerability analysis as it differentiates

between a threat and a vulnerability. Being able to intercept the

network by having a self signed certificate or an expired certificate

is a big vulnerability that the static analysis showed that it is really

common in the selected applications. In this chapter, the tools used

in intercepting the network are addressed, then the process that was

followed to perform a MITM attack and observe vulnerabilities in

the applications, then the results obtained from the dynamic

analysis.

5.1 Dynamic Analysis Tools

5.1.1 Charles Proxy
Charles is an HTTP proxy / HTTP monitor / Reverse Proxy that

enables a developer to view all of the HTTP and SSL/ HTTPS

traffic between the device and the internet [13]. This includes

requests, responses and the HTTP headers (which contain the

cookies and caching information). I used Charles Proxy (Trial Mac

version), to perform MITM attack on the selected applications

mainly in order to test the SSL certificate validation, SSL certificate

checking, and that all important URLs are SSL protected [13].

5.1.2 Burp Suite
Burp Suite is an integrated platform for performing security testing

on web and mobile applications. It is a rich platform that has

various tools that can work together for a complete testing process

[14]. Burp Suite contains a lot of key components but those 2

components are the only ones that was used in this dynamic

analysis.

1. An Intercepting Proxy which gives the flexibility of

inspecting and modifying traffic between the target

application and its server.

2. An Intruder tool for performing powerful customized

attacks to find and exploit vulnerabilities.

5.2 Dynamic Analysis Process
The process created and followed for the dynamic vulnerability

analysis part in the paper was initially solely built on network

intercepting which is done by the use of the tool, Charles Proxy.

But after that Burp Suite was added to the analysis due to it’s

interesting features that can help in producing more vulnerabilities.

Charles proxy is an easy to download and install software but a few

steps that should be done on the android device are needed before

being able to intercept any packages.

On the Android Device:

1. Download the Charles proxy certificate and install it on

the device.

2. Open the device settings and connect to the same WIFI

that the computer is connected to.

3. Press on the connected network and modify the host to

the IP address of the computer and the port as the proxy

port set in Charles proxy (default: 8080).

Now the setup is done and intercepting packets can be start. The

process starts by opening the target application and logging in and

trying different functionalities on the application, specially those

have sensitive information. And at the same time intercepting the

packets on Charles proxy to identify if there are any vulnerabilities.

Basically, you shouldn’t be able to see any sensitive information as

it should be encrypted during the transfer (SSL/TLS).

5.3 Dynamic Analysis Results
The results of this part was shocking as only 5 apps out of the total

of 26 apps implemented SSL pinning which prevents the kind of

attack we were trying to do, the man in the middle attack (MITM)

as it rejects the certificate of the tools used (Charles proxy CA and

Burp CA) as they aren’t identified as the right certificates.

Table 4 shows the overall results achieved from the dynamic

security testing of all the selected applications. The results indicate

that only 5 applications were performing proper SSL pinning, and

17 apps from the selected 26 apps had SSL vulnerabilities which

sounds shocking as MITM attack can be performed easily by faking

a WIFI host and forcing users to install the certificate as part of the

connection process, and by that any access to these applications will

mean that the important financial data of the user can be

compromised.

6. CONCLUSION

Mobile money applications are really convenient and they are the

future of banking and transactions but the problem is that most of

the mobile applications in general are not secure and that goes for

the money applications too. Companies and developers has to take

a break from adding features and following user demand and invest

some time in securing their applications. And as mentioned in this

paper, securing the application is actually not an impossible task

although nothing will be 100% secure but at least developers can

make it way harder for the hackers to attack the applications. From

the results of the security analysis done, we found out that only 4

applications were secure against all the attacks that was part of the

analysis, and two of these apps are the google applications (Android

Pay, Google Wallet) which means that by following the android

developer guidelines and keeping your code up to date, you can

save the private information of a person or prevent an identity theft

or a theft in general.

Table 4. Dynamic Analysis Results

We believe that a lot of the vulnerabilities that was found during

this paper are critical. Utilizing the moblizer framework is

something also to be considered as this will help in finding more

vulnerabilities through the reverse engineering process. Also more

work can be done to test and analyze more apps outside the sector

of mobile money as other sectors applications will probably have

less security measures than most of the mobile money applications.

With vulnerabilities arising everyday, updating the process as well

as updating the keywords for the moblizer framework will be

crucial to make sure that the vulnerabilities and threats are found

through following the process. Moreover, iOS devices make up to

20% of the market share of the mobile devices and it has a higher

percentage of devices accessing these mobile money applications,

so extending this paper by building a similar easy to follow process

to test iOS applications will be really helpful for businesses as to

test their iOS applications as well.

7. REFERENCES

[1] IBM Security (2015, March 19). IBM Sponsored Study Finds

Mobile App Developers Not Investing in Security. Retrieved

from https://www-

03.ibm.com/press/us/en/pressrelease/46360.wss

[2] IDC (2015, August 1). Smartphone OS Market Share, 2015

Q2. Retrieved from

http://www.idc.com/prodserv/smartphone-os-market-

share.jsp

[3] EMarketer (2015, October 26). Mobile Payments Will Triple

in the US in 2016. Retrieved from

http://www.emarketer.com/Article/Mobile-Payments-Will-

Triple-US-2016/1013147

[4] Khan, J., Abbas, H., & Al-Muhtadi, J. (2015). Survey on

Mobile User's Data Privacy Threats and Defense

Mechanisms. Procedia Computer Science, 56, 376-383.

[5] OWASP Mobile Security Paper. (2015). Top 10 mobile

risks. Retrieved from

https://www.owasp.org/index.php/OWASP_Mobile_Security

_Paper# Top_Ten_Mobile_Risks.

[6] Benítez-Mejía, D. G. N., Sánchez-Pérez, G., & Toscano-

Medina, L. K. (2016, July). Android applications and

security breach. In 2016 Third International Conference on

Digital Information Processing, Data Mining, and Wireless

Communications (DIPDMWC) (pp. 164-169). IEEE.

[7] Felt, A. P., Chin, E., Hanna, S., Song, D., & Wagner, D.

(2011, October). Android permissions demystified. In

Proceedings of the 18th ACM conference on Computer and

communications security (pp. 627-638). ACM.

[8] Chin, E., Felt, A. P., Greenwood, K., & Wagner, D. (2011,

June). Analyzing inter-application communication in

Android. In Proceedings of the 9th international conference

on Mobile systems, applications, and services (pp. 239-252).

ACM.

[9] Enck, W., Octeau, D., McDaniel, P., & Chaudhuri, S. (2011,

August). A Study of Android Application Security. In

USENIX security symposium (Vol. 2, p. 2).

[10] Reaves, B., Scaife, N., Bates, A., Traynor, P., & Butler, K. R.

(2015). Mo(bile) money, mo(bile) problems: analysis of

branchless banking applications in the developing world. In

24th USENIX Security Symposium (USENIX Security 15)

(pp. 17-32).

[11] AndroBugs Framework. Retrieved from

https://github.com/AndroBugs/AndroBugs_Framework

[12] Apktool: A tool for reverse engineering Android apk files.

Retrieved from https://ibotpeaches.github.io/Apktool/

[13] Charles Proxy: Getting started

https://www.charlesproxy.com/documentation/getting-

started/

[14] Burp Suite: Getting started

https://portswigger.net/burp/help/suite_gettingstarted.html

https://www-03.ibm.com/press/us/en/pressrelease/46360.wss
https://www-03.ibm.com/press/us/en/pressrelease/46360.wss
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://www.emarketer.com/Article/Mobile-Payments-Will-Triple-US-2016/1013147
http://www.emarketer.com/Article/Mobile-Payments-Will-Triple-US-2016/1013147
https://www.owasp.org/index.php/OWASP_Mobile_Security_Project
https://www.owasp.org/index.php/OWASP_Mobile_Security_Project
https://github.com/AndroBugs/AndroBugs_Framework
https://ibotpeaches.github.io/Apktool/
https://www.charlesproxy.com/documentation/getting-started/
https://www.charlesproxy.com/documentation/getting-started/
https://portswigger.net/burp/help/suite_gettingstarted.html

