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ABSTRACT

Botnets are one of the primary threats in computer security today.
They are used for launching denial of service attacks, sending spam
and phishing emails, and collecting private information. However,
every botnet requires coordination. In order to initiate an attack, a
botmaster must communicate to all of the bots in the network. In
this paper, we present a steganographic system that demonstrates
the feasibility of the social networking website Twitter as a bot-
net command and control center that an attacker could use to reli-
ably communicate messages to a botnet with low latency and nearly
perfect rate of transmission. Our system generates plausible cover
messages based on a required tweet length determined by an en-
coding map that has been constructed based on the structure of the
secret messages. The system considers both the input symbol fre-
quencies (e.g. English letter frequencies) as well as the tweet length
posting frequencies for constructing the encoding maps. A tech-
nique for automatically generating Twitter account names based on
Markov chains is also presented so that the bots can connect to new
accounts if the existing botmaster account is unavailable. All the
experiments were performed using the 7.3M actual tweets from
3.7K verified accounts collected by the tweet parser developed by
us. We have evaluated the efficacy of the system using Emulab and
usability of the system through Amazon’s Mechanical Turk with
promising results. An analysis of the steganographic security of
the proposed system has also been provided. By demonstrating
how a botmaster might perform such communication using online
social networks, our work provides the basis to detect and prevent
emerging botnet activities.
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1. INTRODUCTION

Computing and interconnectivity have spread through modern
society as electricity and plumbing have in the past, to become al-
most entirely ubiquitous. Indeed, it is not uncommon for a single
person to possess numerous computing devices of varying power
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and portability, ranging from handheld smartphones and tablets to
notebooks and desktop computers. Although these devices appear
different, they are all essentially the same. They act as general pur-
pose computers that connect to the Internet to communicate with
other devices across the globe.

Cyber-criminals make use of this vast global Internet by installing
or convincing users to install malicious software, or malware, on to
their devices that allow the criminals to control them remotely. A
collection of these “zombie” computers is called a botnet. Botnets
are one of the most prominent modern computer security threats
[17] and are often used for various forms of cyber crime such as
sending spam emails or performing denial-of-service (DoS) attacks
against other computer networks. In fact, the botnet threat spreads
beyond what we commonly refer to as computing devices. In the
new internet-of-things (IoT), many common household appliances
that contain embedded computers are being connected to the Inter-
net. A recent news story showed that these smart appliances, such
as refrigerators, were being used to distribute spam email'.

The design and communication patterns of these botnet can vary
dramatically, as they are created by cyber-criminals with the intent
of hiding their presence. Social networks have exploded in the past
few years in the same way that the Internet and the web before
them. Today, popular social networks like Twitter and Facebook
have hundreds of millions of users interacting and communicat-
ing in real time. Even with the extremely large user bases, these
services are rarely ever unavailable and will transmit the communi-
cations at an incredible speed. From this information, a clever at-
tacker will recognize that these networks are well suited for crafting
cyber attacks such as controlling an existing botnet. They can take
advantage of the infrastructure, speed of transmission, and large
userbase in which to hide to control the bots. This paper provides a
proof of concept of this type of botnet communication that is hid-
den within the social network Twitter.

Understanding how attackers communicate with botnets is vital
for botnet defense. If the attacker cannot coordinate the bots, they
will be unable to utilize the network. As is common with computer
security research, researching both attack and defense can be use-
ful. Before a proper defense can be made, new attacks must be un-
derstood. Botnets are capable of attacking the availability of a sys-
tem using attacks such as DoS, where the bot flood a network with
requests to cause it to become unresponsive to real traffic. These
attacks are especially dangerous because it is difficult to distinguish
between these fake requests and authentic traffic trying to use the
network. In order to stop these attacks, it is best to be able to crip-
ple the botnet before it can begin. Therefore, understanding how an
attacker might attempt to coordinate these bots is essential.

"http://www.proofpoint.com/about-us/press-releases/01162014.
php
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In this paper, our goal is to develop a method of coordinating bots
in a botnet that uses a stego-system over a popular social network,
Twitter, using only meta data for communication. This covert chan-
nel can also be used for arbitrary communication of relatively short
messages outside of the realm of botnet command and control. By
utilizing steganography, we hide the existence of the botnet con-
trol communication from the outside world while also utilizing the
power of the popular social networking website to ensure timely
delivery of the messages.

Towards that, we have first developed a stego-system leveraging
the Twitter social network platform. This system can be used for
secret communication between various parties for many domains.
Next, we have implemented a botnet command and control (C&C)
communication system that utilizes the stego-system. This C&C
system communicates entirely through the stego-system allowing
the botmaster to control each of the bots. We have also developed
a technique for automatically generating Twitter account names
based on Markov chains so that the bots can connect to new ac-
counts if the existing botmaster account is unavailable. Finally,
we have evaluated the efficacy and performance of both the stego-
system and botnet C&C. All the experiments were performed using
the 7.3 M actual tweets from 3.7K verified accounts collected by
the tweet parser developed by us. We have evaluated the efficacy of
the system using Emulab and usability of the system through Ama-
zon’s Mechanical Turk with promising results. We have also pro-
vided a detailed steganographic security analysis of the proposed
system.

This paper is structured as follows: section 2 contains a broad
literature review of the various techniques that are used in the de-
velopment of the research. Section 3 describes the structure and im-
plementation of the stego-system, botnet-cc, and other components
of the system. Section 4 discusses the experiments conducted and
the evaluation of the results of the experiments including stegano-
graphic security analysis. Section 6 contains our concluding re-
marks and future work related to the paper.

2. BACKGROUND
2.1 Steganography and Steganalysis

Confidentiality has been well established as a security criterion
[7]. Essentially, confidentiality is the preservation of authorized
access and disclosure to information [5]. In most cases, confiden-
tiality is sufficient for protecting information from disclosure. For
example, when using online banking, it is important to conceal the
contents of the communications so that no others can impersonate
either yourself or the bank or otherwise obtain your private banking
information, but it is not usually important to hide the fact that you
are performing the online banking. However, there are situations
where it is not only important to hide the contents of communica-
tion, but also the fact that communication has taken place at all.
This is the undetectability criterion of security, defined by Pfitz-
mann and Hansen [16] as the criterion of being able to determine if
a message even exists.

Just as cryptography is the science related to confidentiality,
steganography is the science related to undetectability [1]. Also, as
cryptanalysis is the analysis of cryptographic techniques and how
to break them [20], steganalysis is the study of steganographic tech-
niques and finding hidden information [1]. From the definitions of
both cryptography and cryptanalysis, we can deduce that a cryp-
tographic system can be considered broken when an attacker can
determine the contents of the communication, also called the plain-
text. Therefore, we can consider a steganographic system (stego
system) broken when an attacker can determine that secret com-
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Figure 1: Botnet C&C for a centralized botnet with multiple C&C
centers.

munication has taken place, that is the attacker has detected the
communication, even if they have not determined the contents of
the message [1].

2.2 Botnets

Botnet software is a type of malicious software (malware) that
is most often placed on a victim’s computer silently. Unlike tradi-
tional malware, however, the botnet software communicates with
a botmaster or bot-herder that coordinates potentially thousands or
even millions of other infected machines, called bots or zombies,
in other attacks. Once created, a botnet can be used for harvesting
personal information on a global scale, or causing significant denial
of service attacks to even the largest organizations [11].

Every botnet must have a command and control (C&C) system
that directs the bots to perform their attacks. Zeidanloo and Manaf
[22] have separated botnet C&C systems in to three groups. Some
botnets use centralized C&C centers where the botmaster can con-
trol all bots directly. Other botnets use a peer to peer C&C system,
where bots communicate with each other. In addition to receiving
commands, many botnets must communicate information back to
the botmaster, especially if their goal is to obtain the private in-
formation of the user whose computer hosts the botnet software.
Finally, some botnets use a hybrid approach.

In the centralized model, communication between the bots and
botmaster is often done using an IRC channel or over HTTP. This
was the original botnet C&C model used. Because the system is
centralized, the C&C center acts as a single point of failure for the
botnet. When using IRC, the botmaster will create an IRC channel
on their server and the bots will then connect to the server to com-
municate with the botmaster. From this IRC channel, the botmaster
could command all bots to initiate a DDoS attack on an enemy. If
the botnet communicates over HTTP, it gains the advantage that
HTTP traffic is not suspicious in general, because it is the protocol
used for web traffic [22]. A centralized approach may also main-
tain several C&C centers to improve communications and prevent
having a single point of failure, as shown in figure 1.

Although most botnets use IRC or HTTP to communicate di-
rectly, the botnet designed for this paper will communicate over a
social network. This concept has been discussed in some previous
work, for example in [19], a method of C&C over Twitter is dis-
cussed, however the commands are sent directly as the content of
the tweets instead of by using a covert channel. A botnet has been
designed to use steganography over a online social network [12],
but it uses image steganography to embed messages in the images
posted normally by the victim. It requires that other bots in the bot-



net be on computers socially connected to the victim via the online
social network.

3. METHODOLOGY
3.1 Twitter Covert Channel
3.1.1 The Stego System

To perform the botnet command and control communication, a
covert channel (stego system) that communicates using the Twitter
social network has been developed. This covert channel is similar
to Desoky’s [4] noiseless steganography and utilizes the cover gen-
eration paradigm, however there are some differences. Even in the
noiseless steganography systems, the secret messages are usually
embedded in to the actual data of the cover objects. For example,
in graph steganography, the plotted data contains the secret mes-
sage. In this system, where the cover objects are tweets, the secret
message is not contained in the data of the tweet (the text), instead
it is contained in the metadata of the tweet (the length). Metadata
refers to “data about data.” All data has some metadata associated
with it, but this metadata is not explitictly stored. It is inferred from
the existing data. The tweet’s data is the text. The tweet also has
metadata such as the time it was posted, the user account, and the
length of the text posted. Additional metadata could include the
letter frequencies of the posted text or the number of spaces in the
text.

Because this system differs from existing steganographic sys-
tems, we will define the parts of this system as follows:

1. The set of possible cover messages, X'*, is the set of possible
tweets, which is the set of messages of up to 140 UTF-8?
characters.

2. The set of possible secret messages, M, can be defined as
3%, where the X notation is taken from the formal languages
domain, and refers to an alphabet of symbols, where the sym-
bols can be arbitrarily defined. For example, one implemen-
tation may use ¥ = {a, b, ¢, . .., z} (the English alphabet).

3. The set of possible keys, /C, is the set of numbers that can be
valid pseudo-random keys for the implementation. In our
case, the implementation uses the Java programming lan-
guage’s java.util.Random’ class, which uses 48 bit keys.

4. The Embed and Generate functions are combined. In our
implementation we generate reasonable cover messages to
have appropriate metadata that contains the secret message.

5. The Extract function will also require a Decode step,
described below.

6. For convenience, we will also use the following notation for
the set of natural numbers up to 140: Ny4o = {1,2,...,140}.
Similarly, if we use N,,, it means the natural numbers from 1
to n. Unless otherwise stated, we assume 0 & N.

The overall system is shown in figure 2, where the numbered
components were implemented for the channel.

The secret message is embedded by utilizing the length of the
posted tweets, by character count. Because a tweet can have a
length of up to 140 characters, the length value can store just over

Zhttps://dev.twitter.com/docs/counting-characters
3http://docs.oracle.com/javase/8/docs/api/java/util/Random.html
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Figure 2: Overview of Twitter covert channel, where the numbered
components were implemented for the channel.
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Figure 3: Modified stego system diagram for Twitter covert chan-
nel.

7 bits of information per tweet. However, embedding 7 bits of in-
formation per tweet is not reasonable in practice. Certain length
tweets rarely appear on Twitter so seeing, for example, many tweets
of length one or two on a single account would be suspicious. To
solve these problems, we can use a one-to-many encoding tech-
nique to hide information in the tweet lengths. We will modify the
normal stego system definition to include the following functions:
Encode: M x K — Ny and Decode: Ny x K = M.

The modified stego system definition is shown in figure 3. A
message m € M is broken up in to symbols of X: mima ... mq.
Each symbol m; is mapped to one of several possible values us-
ing Encode along with the appropriate key k to generate n €
Ni40, the appropriate tweet length value to use for this piece of
the message. This value is passed to Generate, which generates
a plausible cover message (™) € X* to be posted to Twitter.
The Extract function reads the posted tweets and calculates the
length n of each tweet. This value is passed to Decode along with
the original key k to reconstruct the original message m piece by
piece. This design assumes that |[X| < 140, and in fact, smaller
alphabets should improve the security of the channel. A smaller
alphabet allows mapping each symbol to more possible length val-
ues, so repetitions of each length value are less likely. We will
now present a simplified example to show the process of the stego
system.

EXAMPLE 3.1 (ENCODING TABLE GENERATION). In this
example, we will show the process for generating the encoding ta-
ble. Instead of using Niao (all possible length values), we will use
a reduced output alphabet of N1o (1, 2, ..., 10) with an equal dis-
tribution. For the input alphabet, we will use ¥ = {a, b} with an
equal distribution.

[a] []

I 1 R B P B - B 1 B P B A R T R V)

First, choose one element of the output alphabet for each ele-
ment of . This guarantees that at least one output symbol will
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be mapped to each input symbol. Remove the chosen values of the
output alphabet as options for future choices.

o] [10]

Now, choose one element from both sets probabilistically based
on the weights.

Continue this process until all elements of the output alphabet
have been used.

After all elements from the output alphabet have been used, the
encoding table is composed of all of the choices made:

Symbol | Possible Length Values
a 1,357 9
b 2,4,6,8 10

EXAMPLE 3.2 (SIMPLE MESSAGE ENCODING EXAMPLE).
In this example, we will use tweet lengths up to 10, i.e. we will use
Ny = {1,2,...,10} instead of N1ao. We will use 3 = {a,b}
and X* = {x}T, i.e. secret messages will be composed of combi-
natiosn of a and b and cover messages will be strings of x.

Suppose we want to send the secret message m = abba using
the simple Encode map from example 3.1. First, the message is
broken in to the sequence of symbols a, b, b, a. The Encode func-
tion will then map each symbol to a possible length value, e.g. 3,
6, 2, 3. Note that because each input symbol from ¥ can map to
more than one length value from Nio, the same symbol may or
may not be mapped to the same length value in any given mes-
sage. The Generate function will then create cover messages
that match these length values from the set of possible cover mes-
sages X*: vxx,rrrrre,xr,rre. Each cover message would
then be posted to a Twitter account in the order of the original se-
cret message. The Ext ract function on the recipient’s side would
then take the tweets in the posted (chronological) order, returning
the length values 3, 6, 2, 3. The Decode function can then apply
the same map as the Encode function and reconstruct the original
message abba.

This system is generic in that it can be used with many possi-
ble input alphabets, e.g. the English alphabet or arbitrary half-byte
values (0x0, 0x1, ..., OxF). The English alphabet allows sending
simple messages. The half-byte alphabet allows sending arbitrary
binary data by splitting each byte of the input data in half and send-
ing each half as one symbol of the message. It is impossible to

Twitter Account Twitter Account

Figure 4: The botnet C&C diagram for the system.

send an entire byte in one message using this system because the
maximum tweet length is only 140 characters. We chose half-bytes
because it is easy to deconstruct and reconstruct the original bytes
and because it is a relatively small alphabet with only 16 symbols,
so it is possible to map each input symbol to almost 10 different
tweet length values. To obtain symbol frequencies for the half-byte
values, it would be best to empirically sample the types of data be-
ing sent across the channel because, in general, each value would
likely have an equal weight. If the specific type of data being sent is
biased toward certain byte values, that should be considered when
weighting the alphabet.

The botnet command and control diagram for this system resem-
bles the diagram for a centralized botnet, as shown in figure 4. A
botmaster controls one or more Twitter accounts that have tweets
containing the commands and the bots read from these accounts.

3.1.2 The Tweet Generator

The Generate function is one of the most challenging aspects
of this type of stego system. As discussed in [1], generating ap-
propriate and plausible cover messages for a stego system is a non-
trivial problem. In this system, the generator must be capable of
generating messages that can convince a reader of the Twitter ac-
count page that they are viewing regular tweets. This component
has the largest impact on the detectability of the channel. In essence,
the generator must pass a simplified Turing test. Twitter bots are
not a new phenomenon, and in fact several bots were created that
successfully convinced other users that they were real people [2].
Additionally, chat bots exist, such as Cleverbot* which are reason-
ably successful [3]. However, aside from competent English skills,
the generator must utilize the “language of Twitter” that consists of
many retweets® and hashtags®. We consider a strong generator out
of the scope of this work, but we leverage the collected Twitter data
to create a Twitter language model based on tweet contents that can
be used to generate new tweets.

3.1.3 Posting to Twitter

Along with the Encode, Generate, Extract, and Decode
functions, we need a system that can post to Twitter. This is easy to
do for testing purposes thanks to Twitter’s official API” and a third
party Java library, Twitter4J®. For a real botnet scenario, the imple-
menter would likely write their own system that uses raw HTTP
requests because the Twitter API requires authentication of every
call, detects the posting method, and limits the number of posts
allowed for each account. However, because this would violate
Twitter’s terms of use, we will only post tweets using the official
API and abide by all limitations for testing. Now that the rest of the

“http://www.cleverbot.com/
Shttps://support.twitter.com/articles/77606-faqs-about-retweets-rt
®https://support.twitter.com/articles/
49309-using-hashtags-on-twitter

"https://dev.twitter.com/docs/api

Shttp://twitterdj.org
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Symbol | Weight | Encoding
A 14810 | 32,16, 19, 131, 84, 37, 106, 140, 76, 111
B 2715 | 105, 138, 67
C 4943 | 75,36, 125, 46, 62
F 4200 | 17,122,61, 87
0] 14003 | 35, 121,43,107,92, 12

Table 1: Sample encoding map example for a few English alpha-
bets.

Alice Send
Don't be too timid and squeamish about your actions. All life is an
experiment. The more experiments you make the better.

Alice Send
Advice most needed is least heeded.

Alice Send
Life is what you make of it. Always has been, always will be.

Figure 5: Example showing posted tweets for secret message
FOO.

components have been explained, a more complete example will be
presented.

EXAMPLE 3.3 (COMPLETE EXAMPLE). In this example, we
will use the full range of tweet lengths Nyiag. We will use > =
{A, B, ..., Z} (the English alphabet), and X* as a pre-constructed
list of various proverbs and phrases of lengths ranging from one to
140. The Generate function will lookup an appropriate phrase
for each length message provided by the Encode function. Table
1 shows a portion of a generated encoding map from English let-
ters to tweet lengths. The weights shown in the second column are
taken as letter frequencies’. Those weights were used to decide the
number of entries for each letter in the third column.

Suppose we want to send the message FOOQO. First, the message
is separated in to the sequence of symbols F, O, O. Each is passed
to the Encode function, which chooses appropriate lengths, e.g.
61, 35, 121. The Generate function then generates tweets and
they are posted to Twitter, as shown in figure 5. The figure should
be read from bottom up, because the newer messages are posted
on top of the older messages. The account shown is a test account
created for this work. The recipient then reads these tweets, obtains
the lengths, then uses Decode with the same table as was used for
the Encode process to get the original message.

3.1.4 The Botnet Command and Control Language

The stego system described in section 3.1.1 can be used with
an arbitrary input alphabet as long as its size is not larger than the
tweet length range (up to 140 characters), so for botnet command
and control we have developed a language that can be mapped to
tweet lengths and interpreted to execute botnet commands. We

*http://www.math.cornell.edu/~mec/2003-2004/cryptography/
subs/frequencies.html

have included some common botnet commands as described in
[19]. The weights were decided somewhat arbitrarily, because in a
real scenario the botmaster would tailor the weights based on which
commands they believe that they are likely to send most often. In
this case, We are assuming the byte values (indices O to 15) are
more likely, because for some commands arguments must be sent
using these. We don’t assume any single command is more likely
than another.

Index | Weight | Description

0 25 Literal hex value 0

1 25 Literal hex value 1

2 25 Literal hex value 2

16 5 Take screenshot

17 5 Shutdown computer

18 5 Reboot computer

19 5 Perform DoS attack to IPv4 address in
next 4 bytes sent

20 5 Stop DoS attack

21 5 Download and execute file from address
in next k bytes (until delimiter)

22 1 Message delimiter

Table 2: Botnet command and control language for use with the
stego system.

3.1.5 Username Generation using
Markov Chains

It is necessary to have a system for generating user names from
an initial seed so that if the original botmaster account is blocked,
they can start a new account and the bots can also generate the new
account name and begin reading from it. To do this, we employ
Markov chains [14]. The Markov chain being used can generate
strings of letters, numbers, and underscores and is trained using an
existing corpus of such text (in our case, a collection of verified
Twitter usernames).

To use this Markov chain for generating a sequence of user-
names, both the bot and botmaster must have the same initial seed.
Using this seed and the same type of pseudorandom number gen-
erator, the Markov chains will generate the same sequences as long
as both bot and botmaster follow the same procedure. First, they
need to use the random number generator to choose a user name
length. Second, they use the Markov chain with this seed to choose
a starting character. Finally, they generate enough symbols to fit
the length chosen. If one performs an action out of order, it will
affect the sequences generated after that action. For example, if the
botmaster chooses the length first while the bot chooses the start-
ing character first, the sequence generated from the random number
generator will cause each to generate a potentially different length
and starting character.

4. EVALUATION OF RESULTS
4.1 Tweet Collection

Several portions of this paper required collecting data from Twit-
ter. To determine the posting rate of tweets of each length, it was
necessary to collect tweets from real accounts. Therefore, data
from verified'® Twitter accounts was collected. A verified account

https://support.twitter.com/articles/1 19135-fags-about-verified
-accounts
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is an account that Twitter has manually verified to be a specific per-
son or brand. By using verified accounts, this prevents obtaining
data from other bots or fake accounts. However, it has been noted
that verified accounts may not be a perfect representation of the av-
erage Twitter user, who is not generally a brand or celebrity. User
information stored includes the username and user ID, a unique in-
teger that Twitter stores for each user. A total of 54,114 users were
collected. Additionally, for creating the Markov chain, tweet con-
tent was parsed using a regular expression from the collected tweets
to find username references in the tweets. In a tweet, usernames are
preceded by an @ symbol.

From the collected user IDs, tweet content, length, unique iden-
tifier, and posting time were collected. Because of the number of
collected users and the number of tweets posted by each user, dur-
ing the data collection we only obtained tweets from 3,709 users.
However, this totaled 7,345,681 tweets. This data collection was
done automatically from a list of verified users that was obtained
from Twitter. Twitter has a special account with username verified
that will follow all verified accounts. Therefore, we were able to
search for all accounts followed by that special account using the
Twitter API and then begin obtaining tweets posted by each of those
accounts. Not all accounts post in English, some collected data is in
other languages including Portuguese, Spanish, Japanse, and Ara-
bic among others. In order to remove these languages, we used
the third-party Java library NGramJ'!, which performs language
recognition using n-grams. An n-gram is a sequence of symbols of
length n. For example, in English a common bigram (2-gram) is
th. This library ranked each tweet according to which language it
most resenbled. We kept only the tweets where the highest rank-
ing language is English. This left us with 5,461,009 tweets out
of the original 7,345,681. However, this method is not perfect.
Tweets contain some non-typical English characters in hashtags,
names, misspellings, URLs, etc. Because of this, the n-gram analy-
sis likely had some false positives and false negatives. For example,
one tweet had the text “Vancouver, 9/25”, but the n-gram model
marked it as French. After this n-gram analysis, tweets were fur-
ther restricted by checking the character values in each tweet. If a
tweet contains too many non-ASCII characters, then it is not likely
to be English. In this case, we removed all tweets that were 10%
or more non-ASCII characters. This allows up to approximately 14
non-ASCII characters in a full length tweet. The final tweet count
is 5,011,973.

4.2 Stego System Evaluation

4.2.1 Emulab Performance and Reliability Experi-
ment

Emulab [15] is a network testbed and software system designed
for testing networked systems. It allows experimenters to request a
set of physical machines, or nodes, that are configured in a specific
network configuration as defined by a script file supplied to the
Emulab website.

The experiment for this paper was performed by generating sym-
bols from a test alphabet (the English alphabet) and posting gener-
ated tweets using a random text generator and a constructed encod-
ing map. The input symbols were chosen probabilistically with the
weight associated with their letter frequencies. The “botmaster”
acted from a desktop computer outside of the Emulab environment
posting the tweets while the “bots” acted from inside an Emulab
experimental setup. There were five bots in the experiment running
Emulab’s UBUNTU12-64~-STD operating system image. The bot-
master generated a new symbol and posted the corresponding tweet

"http://ngramj.sourceforge.net/index.htm]
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Botmaster |—>| Twitter
Node D

Figure 6: Diagram for the Emulab experiment network layout.

Node A | Node B | Node C | Node D | Node E
5.725 5.644 5.600 5912 5.888

Table 3: Average read time in seconds for each node.

every 30 seconds while the bots performed an HTTP request to the
correct Twitter account every 10 seconds checking for new tweets.
Each time the botmaster posted, it is recorded to a log file. Each
time the bots read a tweet, they also recorded to a log file. Af-
terwards, the logs were collected to compare the post time with the
retrieval time and also to match each original input symbol with the
decoded symbols from the bots. Due to a time zone difference be-
tween the botmaster machine and the bots in the Emulab setup, the
original time stamps from the bots appeared one hour later, so one
hour was subtracted from their times when comparing the differ-
ence in posting and reading time between the botmaster and bots.
Figure 6 shows the network configuration for the experiment.

In the experiment, 100% of input symbols were correctly de-
coded by the bots except for a small set that were off by one. After
examining the data it was determined that in these cases, the tweets
being posted were generated with a trailing space that was then
trimmed by Twitter while posting. If the tweets had been generated
without spaces, this would not have occurred and so these cases
were dropped from the results. The average read time in seconds
for each node are shown in table 3. Each node averaged just over
five seconds from the botmaster’s post to the bot’s read. This is
likely due to the synchronization issues of the botmaster’s posting
and the bot’s sleep time between reads. A total of 305 tweets were
posted for this test and 10 of them were dropped for having trail-
ing whitespace. With an average transmission time of less than six
seconds, the overall transmission rate is up to 10,800 bytes per day.

4.2.2 Capacity

There are three major criteria for stego system evaluation: ca-
pacity, steganographic security, and robustness [1].

At the most basic level, the devised stego system can be used
to transmit at most seven bits of information per tweet because a
tweet can have a length of at most 140. If eight bits were to be
transmitted, there would be 256 different values. With seven bits,
there are 128 different values, so each value can be sent with a dif-
ferent length tweet. Therefore, we can state the maximum capacity
as seven bits per tweet. Tweets are posted to Twitter using UTF-8,
which is a variable length character encoding scheme that is a su-
perset of the ASCII characters. UTF-8 characters range from one
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Figure 7: Possible embedding rates for the stego system in bits on
a logarithmic scale.
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Figure 8: Average posting rate in tweets per day on a logarithmic
scale. The green line indicates the mean.

to four bytes [21]. Therefore, the embedding rate will vary depend-
ing not only on the length of the tweet in characters, but also on
how many characters per byte are being used. The total number of
bytes in a tweet is 560, so the total number of bits is then 4480. The
possible embedding rates are shown in figure 7.

Additionally, we must consider how frequently tweets can be
posted. From the collected Twitter data (see section 4.1), the time
stamp of the tweets was also collected. For each unique user, the
average number of posts per day was then calculated from this data.
This data is shown in figure 8. In total, the averege daily posting
rate is 8.621 tweets per day. Therefore, if the user of the stego sys-
tem is trying to match real Twitter user posting rates, they cannot
send more than approximately 60 bits of data per day. If using the
system for botnet command and control, this will allow the bot-
master to post a small number of commands per day. The botmas-
ter does also have the choice to exceed this value, but then risks a
higher detection rate. Because the data shows the average number
of tweets posted per day per account, that means there are many
accounts that do post more tweets per day. In this data, there are
several accounts that post on average more than one hundred tweets
per day.

4.2.3 Steganographic Security

In this stego system we are assuming a passive warden model. In
a passive warden model, an adversary can view each message but
cannot modify them. The warden must solve the decision problem:

Database Generator
no ragrets

Length | Phrase Generator
10 Lunch time
11 Hello World
12 Good Morning

@J_Baxtl6 14

Table 4: Sample tweets from the database based tweet generators.

does this tweet contain a secret message? Because our implemen-
tation does not embed any data in to the tweets, most techniques
that would be used on a normal stego system are not sufficient. The
posted tweets appear identical to any other tweet from a textual
perspective. However, the tweet generation method is a large deter-
miner of detectability. It is possible to create the tweets manually,
but if the user wants to send many messages using the stego system
this will be cumbersome.

In order to automate the process, a Twitter bot program can be
used to create the tweets. An ideal generator would be a sophis-
ticated Twitter bot that can convince other users that it is human.
This is similar to passing a Turing test with the Twitter bot. If an
account is suspected of being a Twitter bot, it does not mean that
the communication has been detected, however it will cause sus-
picion. The adversary would have to recognize that the account is
being used to pass secret messages and that the secret messages are
done using the lengths of the tweets. The adversary would likely
assume that the text somehow contains the secret messages. If we
follow Kerckhoffs’ principle [10], then we must assume the adver-
sary knows that that the stego system passes messages by tweet
lengths. The two factors that must then be determined are then (i)
the account being used for transmission, and (ii) which tweets be-
ing posted contain the secret message.

If the adversary has no knowledge of which account is being
used, it will be exceptionally difficult to find. The Twitter website
states that there are now 271 million active monthly users and over
500 million daily tweets posted'” as of August, 2014. Because the
tweets have no distinguishing factors in general, an adversary can-
not easily search for the account by tweet content. If the adversary
understands the tweet generator being used, they may be able to
search for the account by the content. So far, the system has been
discussed in a way that implies that all tweets posted on the account
are part of the secret messages, however it is possible to extend an
input alphabet to leave space for ignored tweet lengths. The Twitter
bot could then post these between tweets that contain actual parts
of the secret messages.

The generator that we used is a database generator, which looks
up tweets of the appropriate length from an existing database. The
database may be populated by collecting real tweets from other ac-
counts or from collecting text from other sources. Two of these
database based generators were created. The first uses a small set
of common phrases and for longer tweets some proverbs were col-
lected from the Internet. The second uses the Twitter data previous
collected (see section 4.1). Samples from each of these generators
are shown in table 4.

4.2.4 Network Packet Analysis

In addition to analyzing the stego system content on Twitter,
a small experiment was performed using Wireshark'® to monitor
packet contents while accessing Twitter. Twitter allows connecting
through HTTPS to access user pages, so when using this system it
is best to always access with HTTPS. In this experiment, the wget
command was run twice. First, it was run to access another known

https://about.twitter.com/company
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Twitter account, @ BarackObama. Then, it was run to access the
test account used for this work, @alicesend. In both cases, the
HTML content of the user’s page was downloaded and Wireshark
monitored all traffic between the two hosts. After searching the
wireshark packet contents, there is no noticable difference in the
network traffic. Searches were conducted for identifying strings
such as “alice” and “Obama” but all application data was encrypted
using TLS 1.2 according to Wireshark. Therefore, this traffic in-
formation is insufficient for determining which accounts are being
viewed by the source host. To a network observer, it simply ap-
pears as regular Twitter traffic, which is generally common due to
Twitter’s popularity.

4.2.5 Robustness

Robustness is based on extracting the secret messages from the
cover objects [1]. As shown in the Emulab experiment in section
4.2.2, aside from some anomalous entries, every bot decoded the
appropriate input symbols perfectly. This assumes a passive war-
den model where no one has tampered with the data in transit. In
an active warden scenario, there are two possibilities: (i) Twitter
is modifying the tweets as they are posted or (ii) an adversary has
taken control of the botmaster’s Twitter account.

The first scenario is extremely unlikely. Twitter does perform
some modification as described in section 4.2.2 where trailing
whitespace was removed before the tweets were posted. However,
this modification is well defined and is not intended to modify the
contents of the secret or cover messages. It can be handled by
properly implementing the tweet generator. The second condition
would be devastating for the system. In most of the paper, a pas-
sive warden model was assumed because it was assumed that the
botmaster could maintain control of their Twitter account. It is pos-
sible that the account is taken down if Twitter discovers that it is a
bot or that some other party obtains control of the account.

Aside from the steganographic robustness, the robustness of the
system in general is largely dependent on Twitter’s infrastructure,
which is one of the advantages of using such a service as the com-
munication medium. In previous years, Twitter has suffered with
outages, however it has recently improved significantly. Because
of Twitter’s business model, downtime is very costly for many cor-
porations, organizations, and individuals that rely on Twitter for
marketing'?, giving them great incentive to ensure that service is
maintained.

4.3 Username Generation Analysis

4.3.1 Scoring Names Based on the Generated Markov
Chain

One of the components in the botnet command and control sys-
tem is a method of generating plausible Twitter user names. As
described in section 3.1.5, Markov chains were used to generate
such user names. In order to analyze the usernames generated from
these Markov chains, two experiments were performed. First, a
probability measure was calculated on names based on the Markov
chain. We calculate the probability that a given string would have
been generated by the Markov chain. Let N be a name consisting
of the sequence of characters nins . . . n,. The probability, P(N),
of choosing N from the Markov chain is then

P(N):P(nl)XP(ng|n1)><---XP(’I’Lk|le71). (1)

Because Markov chains are “memoryless” in that the next state is
entirely dependent on the current state, it is not necessary to factor
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Average Negative Log Probability For Usernames on Constructed Markov Chain

52.856398

30.211520 30.213160

Average Negative Log Probability

Real Names Markov Names Random Names

Figure 9: Average negative log probability score for usernames
based on constructed Markov chain.

Real Usernames Markov Chain Usernames | Random Text Usernames
Name Score | Name Score | Name Score

davepeck 20.189543 | Coccpthe 24.123132 | wBc3HLqy 44.472027
nytimes 19.178421 | JorayLa 17.191901 | gzQbhCT 33.078578
focuspolitik  31.618525 | beteckucovao 30.477696 | KvJhIRwF4G45  67.152348
MarsHill 20.768233 | Diajan_m 20.492829 | PthGonXE 30.381789
Scobleizer ~ 26.922820 | Boumezzost ~ 25.873167 | vLdHuXVqDO 56.543208
warrenellis ~ 24.335242 | shltirreaha 30.877799 | 4okIMwHzWDI1  60.301202
redjumpsuit  32.200608 | SEMarannesi  25.831416 | QzFS7n4StQt 58.562229
joshspear 23.335631 | McolitePa 23.613131 | ZhZ1B28vX 46.774850
FUELTV 21.209548 | tudwpi 20.180779 | hFIn60 23.278177
fredwilson ~ 27.280397 | MarassttyM  21.652989 | __hKc4vhHi 50.487769

Table 5: Sample names from each category and their scores.

in previous choices in the probability calculation. The result of
equation 1 becomes small very quickly because of the number of
possibilities, so the answer is stored in log-probability space. That
is, the actual calculation is as follows:

log P(N) = log P(n1)+log P(n2 | n1)+- - -+log P(nk | nk—1).

2
The score of a name is then calculated as the negative log-probability
of the name. Therefore, a lower score is considered a better name
according to the Markov chain. The Markov chain was constructed
based on real name statistics, so if a name has a higher probability
of occurring according to the Markov chain, it should appear to be
a plausible name.

An experiment was run that computed these name scores for all
1.5 million names collected from Twitter along with the same num-
ber of names generated by the Markov chain, each name having
the same length as one of the names from the original set and also
a set of the same number of equally-lengthed random text names.
The average scores calculated from this experiment are presented
in figure 9. Some sample names from each category are presented
in table 5. Keep in mind that a lower score correlates to a higher
probability of being generated by the Markov chain.

These results show that names generated by the Markov chain
are statistically identical (within 0.002) to the real usernames used
to create the Markov chain. It is unlikely that an automated system
could distinguish between them. Random text, however, will not
work in this case. Randomly generated names appear significantly
different than real user names.

4.3.2  Scoring Names using Human Analysis with Me-
chanical Turk

In addition to the statistical analysis, an experiment was per-
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formed using Amazon’s Mechanical Turk'® system. The Mechani-
cal Turk system is a way to connect experimenters that need a hu-
man to evaluate something with willing participants that can per-
form the evaluation for a small fee per task.

For our experiment, we chose the sentiment analysis template.
This asks users to choose from one of five choices and provides
some more specific instructions about each choice. Each worker
was shown one user name that is either a real user name from Twit-
ter, a name generated by our Markov chain, or a name that is just
random text. The worker did not know from which group the name
appeared.

Essentially, we asked them to score their confidence in recog-
nizing whether or not the name was real. If they were confident
that it was fake, they should have answered in the negative. If they
were confident that it was real, they should have answered in the
positive. If they were not sure, they should have answered neutral.
The negative responses are scored with either -1 or -2 depending
on their degree of confidence and the positive responses are scored
with either 1 or 2 depending on their confidence. A neutral re-
sponse scores 0. Each worker was compensated $0.10 for each
name they scored. It should be noted that this experiment is ex-
empt from IRB approval because no identifying information about
any participants is collected. In fact, Mechanical Turk does not pro-
vide a way for requesters to identify workers. Instead, each worker
has a pseudonymous user ID number. Participants were only asked
to respond to a survey of their opinions about the validity of the
user names, not even the user ID was collected after the experiment
was performed.

In total, 50 names were chosen from each category and each
name was shown to five different workers. The aggregated results
are shown in figures 10, 11, and 12.

These results show some differences compared with the auto-
mated statistical analysis above. Random names, however, appear
obviously fake to human examiners. Almost all responses for the
random names were negative. It does appear, though, that hu-
mans are not confident in recognizing real names either, with a
plurality of results being zero and some negative. They seem to
have some inclination toward recognizing fake names generated by
the Markov chain, with more negative answers than the real user
names, but very few considered themselves very confident (a score
of -2).

The results from both the statistical analysis and the Mechani-
cal Turk survey indicate that the method being used for username
generation is sufficient to create usernames that would not appear
abnormal to either an automated name analysis tool or to human
users viewing the page on Twitter. Therefore, this method can be
used as the username generation method for a botnet that must cre-
ate a new account and switch communications to it for some rea-
son, e.g. if Twitter blocks the previous account. By starting with a
common seed, each bot can generate the appropriate new name and
connect to the new account.

5. RELATED WORK

Stegobot [12] is a botnet designed to communicate using social
networks (specifically Facebook) and image stegangraphy. The au-
thors design two separated types of message: bot commands and
bot cargo. The bot commands are messages from the botmaster to
the bots instructing them. The bot cargo are messages from the bots
back to the botmaster containing stolen information.

Stegobot [12] uses a distributed, peer to peer communication
channel and does not generate its own cover messages. Instead, it

Bhttps://www.mturk.com

uses the image files that the victims are already uploading to the so-
cial network as the cover messages, embedding the secret messages
within. The botnet software intercepts the images being posted to
embed the message before it is sent to Facebook. Stegobot uses
the existing network of relationships for each victim as the com-
munication channel. In their experiments, the authors used a set
of 116 images. One of the difficulties of this technique is the au-
tomatic image manipulation performed by Facebook as the images
are uploaded. This can tamper with the content of the embedded
message, requiring a highly robust stego system.

Natarajan et al. [13] designed a detection scheme for Stegobot
that uses the information entropy of the image files that are acting
as the cover objects. Their detection technique achieved average
detection rates exceeding 70% in their experiments for several dif-
ferent image steganography methods.

A similar work by Singh et al. [19] uses Twitter for botnet C&C,
but does not apply steganography to hide the communications. In-
stead, the commands are posted directly to the Twitter account.
This allows the botmaster to leverage the benefits of social net-
works for botnet C&C, but they used communication methods that
will likely appear highly suspicious to any viewers.

SocialClymene [6] is a detection scheme designed specifically
for detecting stego-based botnet command and control methods us-
ing social networks, however it is designed for image steganogra-
phy such as stegobot. CatchSync [9] is another detection technique
that looks at connectivity of nodes in a directed graph to find sus-
picious nodes. In the case of Twitter, connectivity is determined by
which accounts follow other accounts.

Sebastian et al. [18] have created a similar mechanism for bot-
net command and control using encrypted tweets. This method
mixes irrelevant sentences among tweets that contain botnet com-
mands. Their command tweets follow the formula of #keyword
command, where the value of command would be encrypted. While
this method can hide the commands being issued, it does not con-
ceal the existence of the commands. Each command follows the
same formula and can be differentiated from other tweets posted on
the botmaster’s account. Additionally, no mechanism is described
for recovering if the botmaster’s account has been closed due to
detection of malicious activity.

6. CONCLUSION

In this paper, we have demonstrated a general-purpose stego sys-
tem that allows secret communication through the Twitter social
network using only metadata for communication. We have showed
that this system can be used for botnet command and control through
the development of a Twitter stego system and a specialized botnet
C&C language. We have discussed the performance evaluation of
the proposed system using Emulab, and usability study using Ama-
zon MTurk. We have also discussed how the vast userbase and
large scale of Twitter facilitates ample steganograpic security. By
demonstrating how a botmaster might perform such communica-
tion using online social networks, our work provides the basis to
detect and prevent emerging botnet activities.

There are other possible steganographic techniques that can be
applied using Twitter. For example, Twitter allows posting images
along with tweets'® and there are many existing image steganog-
raphy techniques [8] that are often used for watermarking, but can
also be used for communication. The existing system can also be
used on other social network websites such as Facebook, but it may
be necessary to collect data from these websites when deciding on

'Shttps://support.twitter.com/articles/
20156423-posting-photos-on-twitter
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Figure 10: Aggregate scores for real user-
names from the Mechanical Turk experi-

the message length distribution. Unlike Twitter, these other web-
sites generally allow much longer posts, so the system could take
advantage of the increased variation.

It is possible to use this system for key exchange for other exist-
ing stego systems. It is necessary in steganographic key exchange
to have a stego system that can be used to transmit the key, other-
wise an adversary can detect the communication of the keys. Be-
cause this system has a relatively low information bandwidth, it
may be well suited for key exchange that does not require a signif-
icant amount of information. This concept is applied in cryptogra-
phy where a public key algorithm such as RSA is used to send a key
for a symmetric algorithm such as AES because AES can achieve
better encryption and decryption performance than RSA, although
it is technically possible to send all of the communications using
RSA.
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