RESPeCT Summer Institute Professional Development Leader Guide (PDLG)

Grade Level	2	Day	8	STeLLA Strategy	$\begin{aligned} & \text { SCS } \\ & \text { SCS } \\ & \text { SCieI } \\ & \text { SCS } \\ & \text { Ques } \end{aligned}$	Strategy F: Link Science Ideas and Strategy G: Link Science Ideas to ce Ideas Strategy H: Highlight Science Ide tion	ities	Subject Matter Focus	Earth's Changing Surface (ECS)
Focus Questions	- How can science content storyline coherence be enhanced by explicitly implementing STeLLA strategy F (Make explicit links between science ideas and activities), strategy G (Link science ideas to other science ideas), and strategy H (Highlight key science ideas and focus question throughout)? - How will the Student Thinking Lens and Science Content Storyline Lens strategies help you teach the ECS lessons in the fall? - Can we predict and explain how landforms might be changing in our area? - How long do you think it might take to walk the length of the Grand Canyon floor? - How accurate are raised relief maps as content representations?								
Main Learning Goals	Participants will understand the following: - Strategies F, G, and H are all useful in constructing a coherent science content storyline. Strategy F ensures that students are thinking about science ideas before, during, and after each activity; strategy G focuses on making connections among key science ideas that are developed within and across lessons; and strategy H makes sure that key science ideas are highlighted for students throughout a lesson. - All of the SCSL and STL teaching strategies are highlighted in the ECS lesson plans that teachers will use in the fall. These lessons will support teachers in using and deepening their understandings of the STeLLA strategies. - There is evidence to support the ideas that Earth's surface is constantly changing, that water is a key cause of landform changes, and that these changes can happen quickly or very slowly over time. - Second-grade mathematics can be used to solve simple reckoning problems. Such problems help us attach meaning to the numbers representing large distances and the slow rates of change we encounter when studying Earth's changing surface. - The raised relief maps used in the ECS lessons employ an exaggerated vertical scale to illustrate the topography of the United States more effectively. In reality, mountains and canyons are relatively tiny bumps and scratches on the vast surface of Earth.								
Preparation					Materials		Videos		
Daily Setup Tasks - Check that video clips are correctly linked to PowerPoint (PPT) slides. - Set up PowerPoint. - Make sure video clips play correctly with good sound.					Posters and Charts - STeLLA Framework and Strategies poster - Day-8 Agenda (chart) - Day-8 Focus Questions (chart) - Norms for Working Together (chart) - Effective Science Teaching chart (from		Videos clips from one ECS lesson: - Video Clip 8.1: Poulsen classroom (strategy F, before the activity); 8.1_mspcp_gr.2_ecs _poulsen_L3_c4 Video Clip 8.2: Poulsen classroom (strategy F, during the activity); 8.2_mspcp_gr.2_ecs poulsen L3_c3		

- Arrange furniture and food.
- Arrange participant materials.
- Put up posters and charts.

Planning and Preparation Tasks

- Study the PDLG, PowerPoint slides (PPTs), video clips, and handouts. Make changes to PPTs if needed. Modify text highlighted in light-blue font on slides and/or in PDLG to make it specific for your group
- Review the reflections from day 7 and create a summary slide.
- Watch the video clips and anticipate participant responses.
- Prepare charts for the day's agenda and focus questions.
- Prepare two charts to use during the lesson plan review (see slides 15 and 16). These charts will highlight which STL and SCSL strategies are covered in each lesson.
- Display the data table you created on day 7 (Coastline Landform Changes: Part 1) and prepare a new data table based on the model on slide 31. Title the new table "Coastline Landform Changes: Part 2."
- Insert some possible meeting dates for school-year study-group meetings on PPT slide 19.
- Decide how you want to celebrate the end of the Summer Institute and insert those plans on the relevant PPT slide. (See some celebration suggestions in the leader notes for slide 58.)
day 1)
- Strategy charts from days 1-7 (STL strategies 1-7 and SCSL strategies A, B, C, D, I)
- Chart of STL strategies highlighted in ECS lesson plans (see PPT 15 for model)
- Chart of SCSL strategies highlighted in ECS lesson plans (see PPT 16 for model)
- Parking Lot poster

Handouts in RESPeCT PD Binder Front Pocket

- Z-fold summary chart: Science Content Storyline Lens Strategies

Handouts in RESPeCT PD Binder, Day 8

- 8.1 Analysis Guide F: Making Explicit Links between Science Ideas and Activities
- 8.2 Transcript for Video Clip 8.1
- 8.3 Transcript for Video Clip 8.2
- 8.4 Transcript for Video Clip 8.3
- 8.5 Transcript for Video Clip 8.4
- 8.6 Overview of School-Year RESPeCT Study Groups
- 8.7 Vertical vs. Horizontal Scales

Supplies

- Science notebooks
- Chart paper and markers
- Lesson materials kit
- For content deepening:
- Chart paper (1 sheet per pair)
- Ruler
- Timer
- Large sticky notes
- Plastic relief map of the United States (from ECS lesson 2a)

PD Resources

- STeLLA strategies booklet
- RESPeCT PD program binder

Video Clip 8.3: Poulsen classroom (strategy F, after the activity); 8.3_mspcp_gr.2_ecs _poulsen_L3_c6
Video Clip 8.4: Poulsen classroom (strategy
F; after the activity); 8.4_mspcp_gr.2_ecs
_poulsen_L3_c7-c8

	- RESPeCT lesson plans binder Resources in Lesson Plans Binder Resources section: - Earth's Changing Surface Content Background Document - Common Student Ideas about Earth's Changing Surface	

DAY 8 SESSION OUTLINE

Time	Activities	Purpose
$\begin{gathered} 8: 00-8: 15 \\ 15 \mathrm{~min} \end{gathered}$	Getting Started: Housekeeping, Agenda, Day-7 Reflections, Focus Questions	- Build community by sharing participants' reflections from day 7. - Set the stage for a day of learning.
$\begin{gathered} 8: 15-8: 55 \\ 40 \mathrm{~min} \end{gathered}$	Introducing SCSL Strategies F, G, and H	- Deepen participants' knowledge of the purposes and key features of SCSL strategies F, G, and H. - Develop participants' understandings of the similarities and differences among strategies F, G, and H .
$\begin{gathered} 8: 55-10: 30 \\ 95 \mathrm{~min} \\ \text { (Includes } \\ \text { 10-min break) } \end{gathered}$	Lesson Analysis: SCSL Strategies F, G, and H	- Develop participants' ability to identify and analyze strategies F, G, and H in ECS lesson video clips. - Deepen participants' science-content knowledge of Earth's changing surface through lesson analysis.
$\begin{gathered} \text { 10:30-12:00 } \\ 90 \mathrm{~min} \end{gathered}$	Earth's Changing Surface Lesson Plan Review and Fall Overview/Logistics	- Deepen participants' understandings of the ECS lesson plans and the opportunities they provide to practice using STeLLA STL and SCSL strategies. - Help participants understand and feel comfortable with the fall activities and logistics.
$\begin{gathered} 12: 00-12: 45 \\ 45 \mathrm{~min} \end{gathered}$	LUNCH	
$\begin{gathered} \text { 12:45-3:00 } \\ 135 \mathrm{~min} \\ \text { (Includes } \\ \text { 10-min break) } \end{gathered}$	Science and Math Content Deepening: Earth's Changing Surface	- Deepen participants' science-content knowledge by using and applying key science ideas from the ECS lessons. - Develop participants' understandings of 2nd-grade mathematics as a means of solving simple reckoning problems to attach meaning to numbers representing distance and rates of change. - Deepen participants' understandings of scale and the reasons for exaggerating the vertical scale of landforms on relief maps used as content representations.
$\begin{gathered} 3: 00-3: 30 \\ 30 \mathrm{~min} \end{gathered}$	Wrap-Up and Celebration	- Help participants understand the relationships among the Science Content Storyline Lens strategies and when each strategy occurs in the lesson flow. - Facilitate understanding which SCSL strategies must be addressed in the planning process and which need to be anticipated in planning but occur responsively during the actual teaching of the lesson. - Recognize and celebrate participants' learning so far and anticipate further growth in the coming year.

PD Model: Time/Phase	Purpose, Content, and What Participants Do	Slides	Process
		Trends in Reflections	Display Slide 3. Trends in Reflections (5 min) a. Give participants time to review your feedback on their reflections from day 7 and offer reactions, comments, or follow-up questions.
		Today's Focus Questions - How can science content storyline coherence be enhanced by explicitly implementing STeLLA strategy F (Make explicit links between science ideas and activities), strategy G (Link science ideas to other science ideas), and strategy H (Highlight key science ideas and focus question throughout)? - How will the Student Thinking Lens and Science Content Storyline Lens strategies help you teach the ECS lessons in the fall? - Can we predict and explain how landforms might be changing in our area? - How long do you think it would take to walk the length of the Grand Canyon floor? - How accurate are raised relief maps as content representations?	Display Slide 4. Today's Focus Questions (2 min) a. Introduce the focus questions that will guide today's work.

PD Model: Time/Phase	Purpose, Content, and What Participants Do		Slides

PD Model: Time/Phase	Purpose, Content, and What Participants Do	Slides	Process
Slides 6-8	- While strategies F, G, and H help students construct meaning from the science content storyline, each strategy has its own specific purpose. - In strategy F, activities that students carry out should be explicitly linked to the science content storyline so the science ideas are made visible to students before, during, and after an activity. - In strategy G, science ideas introduced in a lesson should be clearly and explicitly linked to the main learning goal(s) within and across lessons. - In strategy H, the science content storyline is easier for students to construct if the main learning goal, supporting science ideas, and flow of events are highlighted at key points during the lesson. What Participants Do - Make, share, and discuss charts summarizing the purposes and key features of strategies F, G, and H. PD Resources - STeLLA strategies booklet - SCSL Z-fold summary chart (front pocket of PD binder)	SCSL Strategies F, G, and H: Purposes and Key Features Group 1: - What are the purposes and key features of strategy F ? - Why is this strategy important for science content storyline coherence? Group 2: - What are the purposes and key features of strategy G ? - Why is this strategy important for science content storyline coherence? Group 3: - What are the purpose and key features of strategy H ? - Why is this strategy important for science content storyline coherence?	Display Slide 7. SCSL Strategies F, G, and H: Purposes and Key Features (30 min) a. Small groups: Divide participants into three groups to make charts that capture the purposes and key features of strategies F, G, and H . Direct groups to refer to their Z-fold summary charts and the STeLLA strategies booklet. b. Whole group: Have small groups share their charts with the entire group. c. Challenge participants to imagine themselves in their Teacher Leader roles. Ask them, "How would you explain these strategies to the teachers you're leading?"
		SCSL Strategies F, G, and H: Discussion Question What's similar and different about these three strategies?	Display Slide 8. SCSL Strategies F, G, and H: Discussion Question (10 min) Note: This slide may be skipped if similarities and differences were addressed in the previous discussion. a. Individuals ($\mathbf{3} \mathbf{~ m i n}$): "Look at your three strategy charts, your Z-fold summary charts, and the strategies booklet as you think about the question on the slide." b. Whole group: Have participants share their ideas about the three strategies. Key ideas about strategies F, G, and H: 1. Similarities: a. These strategies are all focused on linking complete sentence-length science ideas: Strategy F links science ideas to activities,

PD Model: Time/Phase	Purpose, Content, and What Participants Do	Slides	Process
			strategy G links science ideas to other science ideas, and strategy H highlights key science ideas and links them to the focus question throughout the lesson. b. All of these strategies emphasize making the links explicit, not just assuming that students will see the intended links. c. All of these strategies can and should occur throughout the lesson. 2. Differences: a. Strategy F explicitly links science ideas to student activities. b. Strategy G explicitly links science ideas to other science ideas. c. Strategy H explicitly highlights key science ideas and links them back to the focus question.
8:55-10:20 95 min (Includes 10-min break) Lesson Analysis: SCSL Strategies F, G, and H Slides 9-12	Purpose - Develop participants' ability to identify and analyze strategies F, G, and H in ECS lesson video clips. - Deepen participants' sciencecontent knowledge of Earth's changing surface through lesson analysis. Content - In strategy F, activities that students carry out should be explicitly linked to the science content storyline so the science ideas are made visible to students before, during, and after an activity.	Preparing for Video-based Lesson Analysis Read Analysis Guide F, part 1. 1. What is the difference between the main learning goal and supporting science ideas? 2. What is similar about the main learning goal and supporting science ideas?	Display Slide 9. Preparing for Video-based Lesson Analysis (5 min) a. "Next we're going to watch a series of four classroom video clips from one ECS lesson. The first clip takes place before students begin an activity on how particular landforms change over time. The second clip shows students while they're working on the activity. And the third and fourth clips show the teacher following up with students after the activity." b. Have participants locate Analysis Guide F (handout 8.1) in their PD program binders. c. Tell participants that part 1 of the guide provides the context for the video clips. d. Individuals: "Read part 1 of the analysis guide and be prepared to discuss the two questions

PD Model: Time/Phase	Purpose, Content, and What Participants Do	Slides	Process
	- In strategy G, science ideas introduced in a lesson should be clearly and explicitly linked to the main learning goal(s) within and across lessons. - In strategy H, the content storyline is easier for students to construct if the main learning goal, supporting science ideas, and flow of events are highlighted at key points during the lesson. What Participants Do - Identify and analyze the use of strategy F in four video clips. - Identify and analyze the use of strategies F, G, and H in the transcripts from the same four video clips. Videos - Video Clip 8.1, Poulsen classroom (before the activity) - Video Clip 8.2, Poulsen classroom (during the activity) - Video Clip 8.3, Poulsen classroom (after the activity) - Video Clip 8.4, Poulsen classroom (after the activity) Handouts in PD Binder - 8.1 Analysis Guide F - 8.2 Transcript for Video Clip 8.1		on the slide." e. Whole group: - Discuss the questions on the slide. - Ask whether participants have any questions about the activity they'll be observing in the video clips. Key ideas: - Difference between the main learning goal and supporting science ideas: The main learning goal is the big idea that is the focus of the lesson. Supporting science ideas are smaller, connected ideas that build upon each other to support the main learning goal. - Similarity between the main learning goal and supporting science ideas: The main learning goal and supporting science ideas are all expressed as complete-sentence science ideas (not as topics, phrases, or activities).
		Lesson Analysis: Strategy F 1. For each of the video clips, read the context at the top of the transcript and then watch the clip: - Video clip 1: setup for the activity - Video clip 2: during the activity - Video clips 3 and 4 : follow-up to the activity 2. For each clip, use the criteria in part 2 of Analysis Guide F to analyze how well science ideas were linked to the activity.	Display Slide 10. Lesson Analysis: Strategy F (60 min-15 min/clip) a. Have participants review part 2 of Analysis Guide F. After they watch each video clip, ask them to study the corresponding transcript, answer the questions in part 2 of the analysis guide, and then analyze the links between science ideas and activities that were (or were not) made before, during, or after the activity. b. Have participants read the context for video clip 1 at the top of the transcript (handout 8.2 in PD program binder). c. Show video clip 1. Then guide participants through these tasks:

| PD Model:
 Time/Phase | Purpose, Content, and
 What Participants Do | Slides |
| :--- | :--- | :--- | :--- |\quad| Process |
| :--- |

PD Model: Time/Phase	Purpose, Content, and What Participants Do	Slides	Process
			and making sure they understand what they show (segments 0:01:11-02:10), and asking questions about the maps and map data (segments 0:02:11; 0:02:24; 0:02:46; 0:02:56). - Students link science ideas to the activity by trying to explain the map and map data (video segments 0:02:22; 0:02:48; 0:03:09), but only with heavy scaffolding from the teacher does one student begin to use the goal idea to make sense of the maps (see segments 0:02:590:03:31). - Students make explicit links to science ideas at video segments 0:00:52, 0:00:57, 0:02:13, 0:02:30, and 00:03:09. - At video segment 0:02:48, one student draws from experience to explain the maps rather than using science ideas. Sample analyses of video clips 3 and 4: - In clip 3, the teacher asks questions to help students develop science ideas by drawing from the activity (video segments 0:00:31$0: 01: 51$). At segments 0:01:30-01:41, one student shows a strong understanding of how rocks pile up over time to form a delta. - In clip 3, students are involved in making links by answering the teacher's questions. In clip 4, the teacher engages students in a writing assignment in which they summarize their understandings of big ideas from the activity and cite evidence to support their claims. - Missed opportunity: In clip 3, one student has an interesting claim that could have been productively probed. At segment 0:00:51, he states that deltas get smaller after floods. Was he thinking about erosion? If so, this is awesome thinking and closely tied to the learning goal about changes in landforms!

| $\begin{array}{c}\text { PD Model: } \\ \text { Time/Phase }\end{array}$ | $\begin{array}{c}\text { Purpose, Content, and } \\ \text { What Participants Do }\end{array}$ | Slides |
| :--- | :--- | :--- | :--- |$]$| Process |
| :--- |

PD Model: Time/Phase	Purpose, Content, and What Participants Do	Slides	Process
Logistics Slides 13-19	- The ECS lesson plans highlight STeLLA strategies and support teachers in using these strategies. What Participants Do - Share key aspects of an assigned ECS lesson plan. - Chart which STeLLA strategies are highlighted in each lesson. - Decide on academic-year study-group meeting dates after the PD leader describes what will happen in the fall. Handouts in PD Binder - 8.6 Overview of School-Year RESPeCT Study Groups PD Resources - STeLLA strategies booklet - RESPeCT lesson plans binder	ECS Lesson Plan Conversation 1. The science content storyline across lessons - Review the main learning goal for each lesson sequentially. 2. The science content storyline within lessons (5-7 min for each two-part lesson) - How does this lesson fit into the arc of all the lessons? - What are the main learning goal and focus question? - Describe the main activity (or activities). - How will the activity help students better understand the learning goal for the day? - What STeLLA strategy/strategies are highlighted in this activity? - What concerns or suggestions do you have about this activity? 3. Practical issues and questions	Display Slide 14. ECS Lesson Plan Conversation (60 min in conjunction with the next two slides) Note: Create charts like the samples on the next two slides so that participants can view both as they report out. Timing note: Make sure you limit the time for each lesson conversation so you can get through them all. Aim for 5-7 minutes for each lesson. a. Give a brief overview of the science content storyline across lessons and then begin the lesson conversation. b. For step 1 on the slide, review the main learning goal for each lesson sequentially and how it connects to the lesson before and after it. (5 min) c. For steps 2 and 3, ask each participant to report on her/his two-part lesson, which was assigned on day 5 . Note: Encourage participants to present the big picture using the questions in step 2 on the slide, not to walk through every step in their lesson plans. They should bring up details only when they have some concern, question, or suggestion about a modification. d. As participants give their reports, fill in the charts you've created, checking off the main strategies highlighted in each lesson. (See the chart format on the next two slides.) Note: Encourage participants to pick just one or two Student Thinking Lens strategies and one or two Science Content Storyline Lens

PD Model: Time/Phase	Purpose, Content, and What Participants Do	Slides	Process
			strategies that are actually highlighted in the lesson. (Each lesson uses several strategies.) Ideal pattern to highlight for the Student Thinking Lens strategies: - Lesson 1 should highlight elicit and probe questions. The lesson focuses on eliciting students' initial ideas. - Lesson 2 begins challenging student thinking to move forward, so in addition to elicit and probe questions, challenge questions become important. Students' ideas are challenged in the context of analyzing and interpreting data and observations (strategy 4). - Lessons 3-5 include STL strategies 1-5. - Lesson 6 focuses on strategy 6 (using and applying new science ideas in a variety of ways and contexts). Ideal pattern to highlight for the Science Content Storyline Lens strategies: - The lessons don't follow a progressive pattern for SCSL strategies the way they did for the STL strategies. - All of the lessons include strategies A, B, C, H, and I. - Some of the lessons are better examples of strategy D (content representations), such as lessons 2 and 4. - All of the lessons should include strategies F, G , and H to some extent. However, strategies F and G become more apparent in the later lessons as the teacher and students have more opportunities to highlight key science ideas (strategy H) and link science ideas to the activities (strategy F) and other science ideas (strategy G).

PD Model: Time/Phase	Purpose, Content, and What Participants Do	Slides	Process
		STL Strategies Highlighted in the ECS Lessons	Display Slide 15. STL Strategies Highlighted in the ECS Lessons a. As participants report out, complete the chart, indicating with check marks the STL strategies highlighted in the ECS lessons. b. Discuss the reasons certain strategies appear at specific times in the lesson sequence. (See ideal patterns on slide 14 and refer to the summary charts in the STeLLA strategies booklet as needed.)
		SCSL Strategies Highlighted in the ECS Lessons	Display Slide 16. SCSL Strategies Highlighted the ECS Lessons a. As participants report out, complete this chart, indicating with check marks the SCSL strategies highlighted in the lessons. b. Discuss the reasons certain strategies appear at specific times in the lesson sequence. (See ideal patterns on slide 14 and refer to the summary charts in the STeLLA strategies booklet as needed.)

PD Model: Time/Phase	Purpose, Content, and What Participants Do	Slides	Process
		Overview of Study-Group Sessions 1. Purpose: To practice, analyze, and learn from the use of the STeLLA strategies in your science teaching. 2. Review the focus of each study-group session: - What is the main focus for fall study-group sessions 1-3? - What is the purpose of the 2-hour meeting in December/January? - What is the main focus for spring study-group sessions 4-6?	Display Slide 17. Overview of Study-Group Sessions (5 min) a. Have participants locate handout 8.6Overview of School-Year RESPeCT Study Groups-in their PD program binders. b. Emphasize: "The purpose of the study-group sessions is to practice, analyze, and learn from using the STeLLA strategies in your teaching of the Earth's Changing Surface lessons in the fall and the Properties of Matter lessons in the spring." c. Talk participants through Study Groups 1-3 on the handout. d. Pause for questions and a summary task. Ask participants, "What is the main focus for fall study-group sessions 1-3?" e. Talk participants through the 2-hour meeting in December/January and Study Groups 4-6 on the handout. f. Pause for questions and a summary task. Ask participants, "What is the purpose of the 2-hour meeting in December/January?" and "What is the main focus for spring study-group sessions 4-6?"

PD Model: Time/Phase	Purpose, Content, and What Participants Do	Slides	Process
		Teaching the Earth's Changing Surface Lessons 1. Before teaching lesson 1 , give your students the classroom pretest. 2. Teach all the lessons and have one lesson video recorded. 3. Give your students the classroom posttest. 4. Hold on to your students' pre-post tests! You'll analyze them in preparation for Study Group 3.	Display Slide 18. Teaching Earth's Changing Surface Lessons (10 min) a. Before going over this slide, have participants locate the ECS classroom pre-post test in their lesson plans binders (pretabs section). - The classroom pre-post test: "This test is in your lesson plans binder. After you administer the pre- and post-test to your students, you'll need to save all of them, since you'll be analyzing them as part of our study-group work in the fall." b. Review the steps on the slide. C. Emphasize: "It's very important to follow these steps in order and save all of your classroom pre-post tests. Don't return them to students until after Study Group 3."
		Scheduling School-Year Study Groups Proposed meeting day/time: Wednesdays 2:00-6:00 p.m. Meeting place: In our classrooms, rotating from school to school Possible dates for our study-group sessions: - Study Group 1: [insert possible date] - Study Group 2: [insert possible date] - Study Group 3: [insert possible date] - 2-hour meeting to review Properties of Matter lessons: [insert possible date] - Study Group 4: [insert possible date] - Study Group 5: [insert possible date] - Study Group 6: [insert possible date]	Display Slide 19. Scheduling School-Year Study Groups (15 min) Note: Include on this slide some possible dates for six 4-hour study-group meetings and the 2-hour meeting that occurs between Study Groups 3 and 4. a. Suggest possible dates for the study-group sessions, starting with the Wednesday afternoon slot from 2:00 to 6:00 p.m. Note: As you schedule the meetings, keep in mind that you'll need some time between the end of the school day and the beginning of the meeting to get to the location and set up

PD Model: Time/Phase	Purpose, Content, and What Participants Do	Slides	Process
			everything. - Study Group 1: Early October. Round-1 teachers should have their classroom video recordings completed at least three weeks before this session. You will need three weeks to watch the classroom video(s), select the ones you'll use during the study groups, and prepare the videoclip selections and transcripts. - Study Group 2: Mid-November. Round-2 teachers should have their classroom video recordings completed at least three weeks before this session. You will need three weeks to watch the classroom video(s), select the ones you'll use during the study groups, and prepare the videoclip selections and transcripts. - Study Group 3: Early December. This session can occur anytime after Study Group 2 and before the holiday break. - 2-hour meeting: December/January. The purpose of this meeting is to review the Properties of Matter lesson plans in preparation for teaching them. - Study Group 4: Early February. Round-1 teachers should have their classroom video recordings completed at least three weeks before this session. You will need three weeks to watch the classroom video(s), select the ones you'll use during the study groups, and prepare the videoclip selections and transcripts. - Study Group 5: March. Round-2 teachers should have their classroom video recordings completed at least three weeks before this session. You will need three weeks to watch the classroom video(s),

PD Model: Time/Phase	Purpose, Content, and What Participants Do	Slides	Process
		Coastline Landform Changes: Part 1	Display Slide 24. Coastline Landform Changes: Part 1 (4 min) Note: Make sure the data table from day 7 (Coastline Landform Changes: Part 1) is displayed where everyone can see it. a. "First, let's review the data table we created last time to answer questions about coastline landform changes." b. Invite different participants to recap the ideas and evidence for each question on the table. c. During this review, ask questions to probe participants' thinking.
		Let's Share Our Ideas! - What's happening to the cliffs and the beach in the photo below? - What do you think is causing these changes? - Do you think these changes are happening quickly or slowly over time? What is your evidence?	Display Slide 25. Let's Share Our Ideas! (7 min) a. Read the questions on the slide. b. Pairs: Have participants pair up with an elbow partner and use ideas and evidence from the data table to answer these questions. c. Whole group: Invite pairs to share their responses. Record key ideas on chart paper and/or highlight them on the data table.

PD Model: Time/Phase	Purpose, Content, and What Participants Do	Slides	Process
		Key Science Ideas - Earths surface has many types of landforms. - The landforms in one place can look different from the landforms in another place. - Landforms change over time. - Some changes happen very slowly, like when canyons or deltas form, and other changes happen quickly, like during floods or landslides. - Flowing water can change landforms by moving rocks and soil from one place to another.	Display Slide 28. Key Science Ideas (5 min) a. Review the key science ideas on the slide and assign one idea to each participant. b. Individuals: Ask participants to think of evidence from previous investigations that supports their assigned idea. Participants may use available resources (handouts, notes, readings) to help them with this task. c. Whole group: Invite participants to share evidence that support their assigned idea. Record the evidence on chart paper. d. During this review, encourage participants to agree or disagree with others' ideas and evidence, ask question, or add on.
		More Cliffs along the Coastline - What do think might happen to these cliffs over time? - What do you think might happen to the houses near the cliffs?	Display Slide 29. More Cliffs along the Coastline (4 min) a. Read the questions on the slide. b. Invite participants to share their predictions and reasoning. Record key ideas on chart paper. c. Probe participants' thinking and encourage others to agree or disagree, ask questions, or add on.

| $\begin{array}{c}\text { PD Model: } \\ \text { Time/Phase }\end{array}$ | $\begin{array}{c}\text { Purpose, Content, and } \\ \text { What Participants Do }\end{array}$ | Slides | Process |
| :--- | :--- | :--- | :--- |$]$| Reflect: Content Deepening Focus |
| :--- |

PD Model: Time/Phase	Purpose, Content, and What Participants Do	Slides	Process
		Unit Central Questions What does the surface of Earth look like? Does it ever change? - Does the land look the same or different from place to place? What's your evidence? - How and why do landforms change?	Display Slide 34. Unit Central Questions (8 min) a. Pairs: "Now l'd like you to work with a partner to develop answers for our unit central questions. Make sure you include evidence from our investigations to support your ideas. Think about similarities and differences in landforms from place to place, as well as how landforms change and why. When you've finished discussing your ideas and evidence, record them on chart paper; then display them on the wall. Afterward, we'll have a gallery walk to review each other's ideas." Note: Give each pair of participants a sheet of chart paper and markers. b. Gallery walk (2-3 min): When all the charts have been posted on the wall, have participants take a gallery walk, rotating from chart to chart so that everyone has a chance to review one another's work.
		Cm Key Science Ideas - Earths surface has many types of landforms. - The landforms in one place can look different from the landforms in another place. - Landforms change over time. - Some changes happen very slowly, like when canyons or deltas form, and other changes happen quickly, like during floods or landslides. - Flowing water can change landforms by moving rocks and soil from one place to another.	Display Slide 35. Key Science Ideas (Less than 1 min) a. Highlight the key science ideas on the slide that summarize the content deepening work participants engaged in this week.

PD Model: Time/Phase	Purpose, Content, and What Participants Do	Slides	Process
	10-MINUTE BREAK		
	Purpose - Develop participants' understandings of 2nd-grade mathematics as a means of solving simple reckoning problems to attach meaning to numbers representing distance and rates of change. - Deepen participants' understandings of scale and the reasons for exaggerating the scale of landforms on relief maps used as content representations. Content - Second-grade mathematics can be used to solve simple reckoning problems. Such problems help us attach meaning to the numbers representing large distances and the slow rates of change we encounter when studying Earth's changing surface. - The raised relief maps used	EARTH'S CHANGING Content Deepening: Focus Question 2 How long do you think it might take to walk the length of the Grand Canyon floor?	Display Slide 36. Math Content Deepening (Less than 1 min) Transition slide: This slide marks the transition to math content deepening. a. "Now let's dig into some math content deepening that will help us make sense of distance and scale." Display Slide 37. Content Deepening: Focus Question 2 (Less than 1 min) a. Read the focus question on the slide.

| PD Model:
 Time/Phase | Purpose, Content, and
 What Participants Do | Slides |
| :--- | :--- | :--- | :--- |\quad| Process |
| :--- |

PD Model: Time/Phase	Purpose, Content, and What Participants Do	Slides	Process
			hour.") f. Emphasize: "Although we measure distances in units of length, we often make sense of distance in terms of the amount of time it takes to travel from one place to another at a specific rate of speed."
		Making Sense of Large Distances and Slow Rates of Change	Display Slide 39. Making Sense of Distance and Rates of Change (1 min) a. "Landforms like the Grand Canyon can be very large, spanning great distances. They also can change at incredibly slow rates. How can we make sense of such vast distances and slow rates of change? More specifically, how can we help 2nd graders make sense of them?"
		The Grand Canyon The Colorado River winds 277 miles along the floor of the Grand Canyon, from a dam near Page, Arizona, to Lake Mead, near Las Vegas, Nevada. Our focus question: How long do you think it might take to walk the length of the Grand Canyon floor?	Display Slide 40. The Grand Canyon (8 min) a. Read the fact about the Colorado River on the slide. b. Individuals: Have participants write an initial answer for the focus question in their science notebooks. c. While participants are working on the task, create a chart with the heading "Estimated Time to Walk the Canyon Floor." d. Pairs: "Now pair up with an elbow partner and share your time estimates and the reasoning you used to obtain them." e. Whole group: Invite participants to share their time estimates with the group. Record their

PD Model: Time/Phase	Purpose, Content, and What Participants Do	Slides	Process
			responses in specific units of time on the chart (e.g., about 70 hours, about 3 days). f. Challenge the accuracy of participants' estimates (e.g., 70 straight hours of walking? No breaks? No pit stops?).
		Reckoning Problem 1 - How wide is the room in feet? - How long does it take to comfortably walk across the room?	Display Slide 41. Reckoning Problem 1 (5 min) a. "The Grand Canyon question we just considered is called a reckoning problem. A powerful way to solve such problems is to start with simple things we know and use relationships we're familiar with to build up to an answer for something we don't know. To demonstrate this, let's solve some reckoning problems." b. Read the questions on the slide. c. Help participants answer the questions by stepping off the distance (width) across the room while one participant times your movement using a stopwatch or smartphone timer. Then have someone use a ruler to measure the length of your stride in feet (round to the nearest whole foot to keep the arithmetic simple). Instead of multiplying the number of feet per stride by the number of strides it took to cross the room, demonstrate skip counting to achieve the desired number. d. Direct participants to record these estimates in their science notebooks. Ideal responses: - Question 1: It takes about 12 steps to cross the room. If each stride is about 2 feet, that means the room is about 24 or 25 feet across. Round to 25 to make the next step easier to

PD Model: Time/Phase	Purpose, Content, and What Participants Do	Slides	Process
			calculate. - Question 2: It takes about 6 seconds to comfortably walk across the room.
		Reckoning Problem 2 How long would it take to walk the length of a building with 10 such rooms in a row, and how far would we travel?	Display Slide 42. Reckoning Problem 2 (4 min) a. "Now that we know how long it takes to walk across one room, let's estimate how long it would take to walk the length of a building with 10 such rooms in a row, and how far we'd travel." b. Elicit ideas from the group and use probe and challenge questions to clarify participants' reasoning. c. Emphasize that skip counting can be used instead of multiplication to complete the calculations. The graphic on the slide illustrates this. Skip counting by the length of the room 10 times is the same as measuring the length of 10 identical rooms end to end. Similarly, one can use skip counting to compute the time needed to walk the length of 10 rooms (6 seconds, 12, 18,24 , and so on). Ideal response: - It would take about 60 seconds or 1 minute (based on skip counting) to walk the length of the building, and the distance traveled would be 250 feet.

PD Model: Time/Phase	Purpose, Content, and What Participants Do	Slides	Process

| PD Model:
 Time/Phase | Purpose, Content, and
 What Participants Do | Slides | Process |
| :--- | :--- | :--- | :--- |\quad| Reckoning Problem 4 |
| :--- |

\(\left.$$
\begin{array}{|l|l|l|l|}\hline \begin{array}{c}\text { PD Model: } \\
\text { Time/Phase }\end{array}
$$ \& \begin{array}{c}Purpose, Content, and

What Participants Do\end{array} \& \& Slides\end{array} \quad $$
\begin{array}{l}\text { Process }\end{array}
$$\right]\)| Display Slide 45. Building Up to 277 Miles |
| :--- |
| (8 min) |

PD Model: Time/Phase	Purpose, Content, and What Participants Do	Slides	Process
			- It would take about 30 hours to walk 100 miles, which is about 1 day and 6 hours. - It would take about 2 days and 12 hours to walk 200 miles. - It would take about 3 days and 12 hours of straight walking to cover 277 miles on the floor of the Grand Canyon.
		Basic Reckoning Skills - We started with a familiar scale (length of room in feet) and unit of time (seconds). - We used skip counting to add up, keeping track of time and distance for progressively larger groups (1 room, 10 rooms, 4 buildings, 1 mile). - We performed addition with base-10 notation for numbers up to the thousands (e.g., $5,280 \mathrm{ft}=1 \mathrm{mi}$). - We used common units of distance and time (feet and seconds, miles and hours) - Key point: Changing the units of measurement kept the numbers manageable and within our ability to interpret.	Display Slide 46. Basic Reckoning Skills (1 min) a. "It's important to recognize the basic skills we used in solving our reckoning problems." b. "First, we started with a familiar scale (the length of the room in feet) and unit of time (seconds)." c. "Then we used skip counting to add up, keeping track of time and distance for progressively larger groups (one room, 10 rooms, four buildings, 1 mile)." d. "This required us to perform addition with base10 notation for numbers up to the thousands (e.g., adding up to 5,280 feet or 1 mile)." e. "In fact, we changed the units of measurement along the way-seconds to minutes to hours and rooms to buildings to miles-to keep the numbers we were working with under 1,000 (e.g., 2 miles instead of 10,560 feet; 1 day instead of 86,400 seconds)." f. "This kept the numbers manageable and within our ability to interpret."

PD Model: Time/Phase	Purpose, Content, and What Participants Do	Slides	Process

PD Model: Time/Phase	Purpose, Content, and What Participants Do	Slides	Process
		Common Core Math Standards: Grade 2 Instructional time should focus on four critical areas: 1. Extending understanding of base-ten notation 2. Building fluency with addition and subtraction 3. Using standard units of measure 4. Describing and analyzing shapes Key point: We can use base-10 notation, fluency with addition, and standard units of measure to make sense of the distances involved in describing landforms and landscapes.	Display Slide 48. Common Core Math Standards (Less than 1 min) a. "The Common Core State Standards for 2ndgrade math stipulate that mathematics instruction 'should focus on four critical areas: (1) extending understanding of base-ten notation; (2) building fluency with addition and subtraction; (3) using standard units of measure; and (4) describing and analyzing shapes." b. "These critical areas are exactly what we can use to make sense of the distances involved in describing landforms and landscapes like the Grand Canyon."
		Reflect: Content Deepening Focus Question 2 How long do you think it might take to walk the length of the Grand Canyon floor? Remember: The Colorado River winds 277 miles along the floor of the Grand Canyon, from a dam near Page, Arizona, to Lake Mead, near Las Vegas, Nevada.	Display Slide 49. Reflect: Content Deepening Focus Question 2 (4 min) a. Review the focus question on the slide. b. Individuals: Have participants write a new answer for this question in their science notebooks. Make sure they explain their estimates. c. Whole group: Invite participants to share their estimates and reasoning with the group. Record the answers on chart paper and ask probe questions to clarify participants' reasoning. d. During this share-out, encourage participants to agree or disagree, ask questions, and add on to others' ideas.

PD Model: Time/Phase	Purpose, Content, and What Participants Do	Slides	Process
	Purpose - Deepen participants' understandings of scale as it relates to the accuracy of raised relief maps.	Content Deepening: Focus Question 3 How accurate are raised relief maps as content representations?	Display Slide 50. Content Deepening Focus Question 3 (Less than 1 min) a. Hold up a raised relief map for everyone to see. Then lay it flat on the table so that the raised relief is evident. b. Read the focus question on the slide. c. "Next, we'll analyze the raised relief maps used in the ECS lessons and determine how accurate they are as topographical representations of Earth's surface across the contiguous United States."
		Vertical vs. Horizontal Scales Earth's surface is the boundary of interaction between Earth's interior (tectonic movement) and the atmosphere (weather).	Display Slide 51. Vertical vs. Horizontal Scales (1 min) a. "Earth's surface is the boundary of interaction between two systems: Earth's interior and Earth's atmosphere. Convection in Earth's mantle drives the movement of tectonic plates and the creation and destruction of the crust. In Earth's atmosphere, solar heating and cooling drive the complex movements of air and water." b. "As the altitude above Earth's surface increases, temperatures typically decrease. But at an altitude of approximately 20 kilometers, this trend reverses, and temperatures begin to increase. This change marks the end of the troposphere and the beginning of the stratosphere. The troposphere is the range of altitudes where most aircraft operate and most of the world's weather occurs. The stratosphere is the range of altitudes where weather balloons hang out."

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PD Model: Time/Phase \& Purpose, Content, and What Participants Do \& \multicolumn{4}{|c|}{Slides} \& Process \\
\hline \& \multirow[t]{5}{*}{} \& \& \& \& \& \begin{tabular}{l}
c. "Above the stratosphere, temperature trends change again and again, signaling the transition between other regions of the atmosphere extending into space." \\
d. Highlight the various regions of Earth's atmosphere on the slide diagram. Emphasize that in the diagram, the scale of these regions on the diagram is greatly exaggerated. The diameter of Earth is about 12,000 kilometers, and the troposphere is only 20 kilometers thick, but in the diagram it's about one quarter the diameter of Earth. That's 3,000 times too big!
\end{tabular} \\
\hline \& \& \multicolumn{4}{|l|}{Vertical vs. Horizontal Scales} \& Display Slide 52. Vertical vs. Horizontal Scales (2 min) \\
\hline \& \& \begin{tabular}{l}
Vertical \\
Radius of Earth \\
Depth of the Mariana Trench
\end{tabular} \& \(3,959 \mathrm{mi}\) \& \begin{tabular}{l}
Horizontal \\
Distance from Cal \\
Poly Pomona to Mt. \\
Distance from \\
Pomona to Santa \\
Monica
\end{tabular} \& \({ }_{45 \mathrm{mi}}^{2 \mathrm{mi}}\) \& \\
\hline \& \& \begin{tabular}{l}
Elevation of Mount Everest \\
Average thickness \\
of Earth's crust \\
Average altitude of the base of the stratosphere
\end{tabular} \& \[
{ }_{7 \mathrm{mi}}^{17 \mathrm{mi}}
\] \& \begin{tabular}{l}
Length of the Grand Canyon Length of the \\
Mississippi River \\
Distance from Pomona to Cape Town, South Africa
\end{tabular} \& \({ }^{277 \mathrm{mi}}\)

$2,350 \mathrm{mi}$
$9,990 \mathrm{mi}$ \& b. "This handout shows some familiar vertical and horizontal distances measured in miles. Most people are able to attach meaning to these numbers because they range from single digits to four digits."

\hline \& \& \& \& \& \& | c. "The distances in the left column are vertical because they're measured up and down in our frame of reference. The radius of Earth, for example, is measured from the center point of Earth upward to the point just below our feet." |
| :--- |
| d. "The distances in the right column are horizontal because we measure them laterally along the surface of Earth or as the crow flies. For example, the distance from Pomona to Cape Town, South Africa, is measured along a great circle on the sphere, which is the shortest route a long-haul aircraft would fly from one location |

\hline
\end{tabular}

PD Model: Time/Phase	Purpose, Content, and What Participants Do		Slides

PD Model: Time/Phase	Purpose, Content, and What Participants Do	Slides	Process
			- The radius of Earth is about 567 times larger than the depth of the Mariana Trench. - The Grand Canyon is about 50 times longer than the elevation of Mount Everest. d. Participants will probably have trouble with the last question on the slide. Have a volunteer use a ruler standing on end to estimate the height of the tallest mountain on the relief map in inches (or centimeters) and then measure the distance from Los Angeles to San Francisco on the map in inches (or centimeters, consistent with the other measurement). e. "It's about 350 miles from Los Angeles to San Francisco, and the tallest mountain in the contiguous United States is Mount Whitney in the Sierras at 14,505 feet. If we say that Mount Whitney is about 3 miles high (3 miles $\times 5,280$ feet in a mile $=15,840$ feet), then the distance from Los Angeles to San Francisco is about 116 times greater than the height of Mount Whitney. How many times greater is the height of the tallest mountain on the relief map than the distance on the map from Los Angeles to San Francisco?" f. Help participants answer this question and then direct them to use the result to answer the last question on the slide, applying similar reasoning. The answer is quite surprising. The vertical scale of the map is greatly exaggerated in order to make the topographical changes across the US more evident. This is helpful for illustrating the differences between landforms, such as mountains and plains, but it plays into our natural tendency to envision exaggerated vertical scales. The mountains north of Los

PD Model: Time/Phase	Purpose, Content, and What Participants Do		Slides

\(\left.$$
\begin{array}{|l|l|l|l|}\hline \begin{array}{c}\text { PD Model: } \\
\text { Time/Phase }\end{array}
$$ \& \begin{array}{c}Purpose, Content, and

What Participants Do\end{array} \& Slides\end{array}\right]\)| Process |
| :--- |

PD Model: Time/Phase	Purpose, Content, and What Participants Do	Slides	Process
	participants' learning so far and anticipate further growth in the coming year. Content - Many of the SCSL strategies must be completed during the planning stage. Strategies B, F, G, H, and I are moves the teacher makes while teaching. But planning and anticipating how these strategies will help develop the lesson is critical to success. - The RESPeCT lesson plans provide examples of how strategies B, F, G, H, and I might be used during the lessons. - Strategies F, G, and H should be used throughout the lesson. Strategy B is used at the beginning of a lesson, and strategy I is used at the end. What Participants Do - Study the SCSL summary chart in the STeLLA strategies booklet to identify key patterns and relationships among the strategies. Supplies - Science notebooks	Summarizing Science Content Storyline Lens Strategies - What does the organization of the summary chart in the STeLLA strategies booklet highlight about the Science Content Storyline Lens strategies? - Do you want to make any revisions or additions to our chart on effective science teaching?	Display Slide 57. Summarizing Science Content Storyline Lens Strategies (10 min) Note: Display one question at a time on the slide. a. "This week we focused on the Science Content Storyline Lens and strategies. Let's synthesize and summarize our learning by looking at the summary chart in your strategies bookletSummary of the STeLLA Science Content Storyline Lens Strategies." Note: Participants may also refer to their SCSL Z-fold summary charts for this activity. b. Individuals: "Look at this summary chart and how it's organized. What do you think the organization highlights? Write your observations in your notebooks." c. Whole group: "What did you notice about the organization of this chart? What does it highlight about the science content storyline strategies?" d. Reveal the second discussion question on the slide and invite participants to suggest additions or changes to the Effective Science Teaching chart. Key ideas: 1. Many of the SCSL strategies must be completed during the lesson planning stage. For example, the main learning goal and activities that match them must be selected ahead of time. 2. Strategies B, F, G, H, and I are moves the teacher makes while teaching the lesson, but planning and anticipating how these strategies will help develop the lesson is critical to

PD Model: Time/Phase	Purpose, Content, and What Participants Do	Slides	Process
	PD Resources - STeLLA strategies booklet - Optional: SCSL Z-fold summary chart (front pocket of PD binder)		success. 3. The RESPeCT lesson plans provide examples of how strategies B, F, G, H, and I might be used during the lessons. 4. Strategies F, G, and H should be applied throughout the lesson. Strategy B is used at the beginning of a lesson, and strategy I is used at the end. 5. Each strategy has its own distinct purpose(s), but all of them contribute to creating a coherent science content storyline.
		Let's Celebrate! Design your own end-of-program celebration and insert any comments or instructions here.	Display Slide 58. Let's Celebrate! (15 min) a. Decide how you'll celebrate the end of the RESPeCT PD program, and modify the slide accordingly. Here are a few ideas: - Have refreshments and toast the group's success with a bubbly, nonalcoholic drink. - Have everyone write on an index card a "golden nugget" that represents something they're taking away from the Summer Institute experience. Pass around a bowl filled with chocolates wrapped in gold paper, and have participants take a piece of chocolate when they drop their cards in the bowl. After the bowl is passed around, share the golden nuggets with the group. - Take a group photo.

PD Model: Time/Phase	Purpose, Content, and What Participants Do	Slides	Process
		Thank You! Thank you for participating in the RESPeCT PD program!	Display Slide 59. Thank You! (Less than 1 min) a. Before dismissing participants, thank them for participating in the RESPeCT PD program.

