Name:	Date:

Stream-Model Observations

Directions

Part 1

a.	Before you begin: What do you predict will happen to the sand, soil, gravel, and rocks
	in your stream model when the water starts running? Write your ideas in your notebooks
	using this sentence starter:
	I predict that

b. Spread a mix of different-sized earth materials—sand, soil, gravel, and a few larger rocks—across your stream table so it looks like the land on a hillside. Using your

protractor, record the angle of the stream table:

- c. Find an area near the top of the table that contains sand, soil, gravel, and at least one larger rock. You're going to focus on a small area near the top of your stream table containing some sand, gravel, and rock.
- d. Let water run through the earth materials.
- e. Let about one fourth of the water in the jug flow **slowly** through the earth materials. Then close the plug on the jug.
- f. Observe where the water flows in the stream model and where the earth materials go.
- g. Mark the areas where erosion and deposition are occurring on the stream table by placing your erosion and deposition cards in those areas.
 - **Draw in your science notebook:** Draw a bird's-eye view of your stream table that shows where earth materials were eroding and where they were deposited.
 - Write in your science notebook: Describe your observations. What happened when the water flowed over the sand/soil, gravel, and rock? Be detailed and specific.

Part 2

- a. Make your stream table steeper by placing one or two books under the uphill end of the model. Record the new angle of the stream table using your protractor: _____
- b. Spread more earth materials—sand/soil, gravel, rocks—across the stream table so it looks similar to the way it looked at the beginning of part 1.
- c. Let water run through the earth materials again. (Use about one fourth of the remaining water and then close the plug on the jug.)
- d. Observe where the water flows in the stream model and where the earth materials go.
- e. Mark the areas where erosion and deposition are occurring on the stream table by placing your erosion and deposition cards in those areas.
 - **Draw in your science notebook:** Draw a bird's-eye view of your stream table that shows where materials were eroding and where they were deposited.
 - Write in your science notebook: What happened when you made the hill steeper? What was different?

Nam	ne: Date:
	Stream-Table Observations and Reflections
Wher	n you've completed part 3, paste this page into your science notebook.
Part	3
1. 0	n your stream table, where were earth materials eroding?
2. O	n your stream table, where were earth materials being deposited?
	ow is your stream model like the stream on a mountainside or a stream running down e street after a rainstorm? How is it different?
	hink about your stream-model observations and answer this question: <i>How does flowing</i> ater change Earth's surface?