Energy Transfer Lesson 4a: Energy Changing Costumes

Grade 4	Length of lesson: 45 minutes	Placement of lesson in unit: 4a of 6 two-part lessons on energy transfer
Unit central question: I change?	How does the energy of an object move and	Lesson focus question: Where does the energy of a moving object come from?

Main learning goal: Energy can change, or transform, from potential energy to kinetic energy.

Science content storyline: Energy moves from place to place and can transfer from object to object during a collision. Some forms of energy, such as potential energy, can't be detected in the same way kinetic energy is detected. Objects above the ground (such as at the top of a hill) have potential energy. Potential energy can change or transform into detectable kinetic energy.

Ideal student response to the focus question: Energy can transfer from one object to another object in a collision. This is one place energy comes from. The energy of an object can also come from potential energy. If an object is higher up off the ground—like on the top of a hill— but isn't moving, it has potential energy. Gravity is pulling on the object, so it *could* move. Once the object starts moving—like rolling down the hill—its potential energy changes to kinetic energy.

Preparation	
 Materials Needed Student notebooks Chart paper and markers One ramp-and-marble setup (from lesson 2a) Colored pencils (for each student) 	 Ahead of Time Review sections 1–8 in the Energy and Energy Transfer Content Background Document. Prepare a copy of handout 4.1 (Mumford and Leroy's Collision, Part 2) for display on a document reader or overhead projector.
 Student Handouts 3.3 Mumford and Leroy's Collision, Part 1 (from lesson 3b) 4.1 Mumford and Leroy's Collision, Part 2 (1 per student) 4.2 Mumford and Leroy's Big Crash, Part 3 (1 per student) 	

Lesson 4a General Outline

Time	Phase of Lesson	How the Science Content Storyline Develops
5 min	Link to previous lesson: Students revisit the unit central question and discuss how they would answer this question based on what they've learned so far about energy.	• Energy moves from place to place and can transfer from object to object during a collision.
1 min	Lesson focus question: The teacher introduces the focus question, <i>Where does the energy of a moving object come from?</i>	
7 min	Setup for activity: The teacher engages students in a discussion about Mumford's energy before and during his ride down the hill. Then students share their ideas about where his energy came from.	• Senses alone can't detect all forms of energy. Potential energy is one form that can't be detected the same way kinetic energy is detected (using our senses). Objects above the ground, such as at the top of a hill, have potential energy because gravity is pulling on them, and they have the <i>potential</i> to move. When an object begins to move, its potential energy changes to kinetic energy.
15 min	Activity: Students read part 3 of Mumford and Leroy's big crash and learn about the science idea of potential energy. Then they describe the potential energy in Mumford and Leroy's collision.	• An object above the ground, such as on a table or at the top of a hill, has potential energy. Potential energy can transform into kinetic energy as the object moves from a higher position to a lower position (i.e., toward ground level). Energy isn't created; it comes from somewhere. Therefore, the kinetic
10 min	Follow-up to activity: Students revisit the ramp-and- marble investigation from lesson 2 and describe the potential and kinetic energy of a marble as it rolls down ramps of varying heights. Then they relate ideas about energy transformation to Mumford as he rode his bike down the hill.	energy of an object can come from potential energy.
6 min	Synthesize/summarize today's lesson: The teacher revisits the focus question, and students write a preliminary answer using science ideas about energy and moving objects.	
1 min	Link to next lesson: The teacher foreshadows the next lesson in which students will gather more information about potential and kinetic energy to explain how energy changes costumes.	

Time	Phase of Lesson and How the Science Content Storyline Develops	STeLLA Strategy	Teacher Talk and Questions	Anticipated Student Responses	Possible Probe/Challenge Questions
5 min	Link to Previous Lesson Synopsis: Students revisit the unit central question and discuss how they would answer this question based on what they've learned about so far about energy. Main science idea(s): • Energy moves from place to place and can transfer from object to object during a collision.	Link science ideas to other science ideas. Ask questions to elicit student ideas and predictions. Ask questions to challenge student thinking.	 Show slides 1 and 2. Let's revisit our unit central question, How does the energy of an object move and change? Based on what we've learned about energy from our investigations, how would you answer this question? NOTE TO TEACHER: Write students' responses on chart paper so you can revisit and revise them as needed. Answers should include accurate statements about how kinetic energy moves or transfers from object to object (energy transfer). Students may not necessarily talk about how the energy of an object changes, since energy transformation will be introduced later in this lesson. But they may have some ideas from previous investigations. Challenge student ideas that are scientifically inaccurate. At this point in the lessons, students should be forming accurate science ideas about kinetic energy and energy transfer. 	Energy can move from place to place and from one object to another. When two objects collide, energy moves or transfers from one object to another object. Faster-moving objects have more kinetic energy than slower- moving objects. The energy of an object changes when the object's speed changes.	Can anyone add to this idea? Can someone use our new vocabulary word <i>kinetic</i> in their answer? How do you know that? What's your evidence? How does energy change? What did we do in class that helped

Time	Phase of Lesson and How the Science Content Storyline Develops	STeLLA Strategy	Teacher Talk and Questions	Anticipated Student Responses	Possible Probe/Challenge Questions
				We detected energy by seeing motion, hearing sound, feeling heat, and seeing light in different objects. We used a model with ramps and marbles to show that a faster- moving object has more motion energy. We used a model of Mumford and Leroy to show how Mumford's energy transferred to Leroy when they collided on their bikes.	you understand how energy moves and changes?
1 min	Lesson Focus Question Synopsis: The teacher introduces the focus question, Where does the energy of a moving object come from?	Set the purpose with a <u>focus</u> <u>question</u> or goal statement.	 Show slide 3. Our focus question today is Where does the energy of a moving object come from? Write this question in your science notebooks and draw a box around it. To help us answer this question, we'll investigate what happened to Mumford's energy when he rode his bike down the hill. 		

Time	Phase of Lesson and How the Science Content Storyline Develops	STeLLA Strategy	Teacher Talk and Questions	Anticipated Student Responses	Possible Probe/Challenge Questions
7 min	 Setup for Activity Synopsis: The teacher engages students in a discussion about Mumford's energy before and during his ride down the hill. Then students share their ideas about where his energy came from. Main science idea(s): Senses alone can't detect all forms of energy. Potential energy is one form that can't be detected the same way kinetic energy is detected (using our senses). Objects above the ground, such as at the top of a hill, have potential energy because gravity is pulling on them, and they have the <i>potential</i> to move. When an object begins to move, its potential energy changes to kinetic energy. 	Make explicit links between science ideas and activities before the activity. Ask questions to elicit student ideas and predictions. Ask questions to probe student ideas and predictions. Ask questions to challenge student thinking.	Show slide 4. NOTE TO TEACHER: Draw a hill on the board or on chart paper. Then draw a circle representing Mumford at the top of the hill. Use the diagram on the slide as a model. Then ask students the following questions about Mumford's kinetic energy in the story. How much kinetic or motion energy do you think Mumford had at the top of the hill before he started moving? When did he first have kinetic energy? When did Mumford have the most kinetic energy? When did Mumford have the most kinetic energy? When did Mumford have the most kinetic energy?	None. When he started riding down the hill. When he was moving the fastest—at the bottom of the hill. Maybe he got energy from the hill. I think he got energy	How do you know this? What's your evidence? How do you know he had the most motion energy at the bottom of the hill? Why do you think that? Are you saying that the hill made the energy?
	1			from gravity.	Say more about

Time	Phase of Lesson and How the Science Content Storyline Develops	STeLLA Strategy	Teacher Talk and Questions	Anticipated Student Responses	Possible Probe/Challenge Questions
					gravity and energy.
15 min	Activity		Show slide 5.		
	 Synopsis: Students read part 3 of Mumford and Leroy's big crash and learn about the science idea of potential energy. Then they describe the potential energy in Mumford and Leroy's collision. Main science idea(s): An object above the ground, such as on a table or at the top of a hill, has potential energy can transform into kinetic energy as the object moves from a higher position to a lower position (i.e., toward the ground). Energy isn't created; it comes from somewhere. Therefore, the kinetic energy of an object can come from potential energy. 	Make explicit links between science ideas and activities during the activity.	So we know that Mumford had kinetic energy when he coasted down the hill, but we're not sure where that energy came from. Several of you had some great ideas, but let's see if we can gather more information to figure this out. From our story about Mumford and Leroy, we know that energy can move or transfer from one object (or bike rider) to another. Where did you see examples of energy transfer in the story?	When Mumford crashed into Leroy, Mumford slowed down and came to a stop, and Leroy and his bike started moving. Motion energy, or kinetic energy, was transferred from Mumford to Leroy when they collided. Mumford	Can you use the words <i>motion</i> <i>energy</i> or <i>kinetic</i> <i>energy</i> in your description?

Time	Phase of Lesson and How the Science Content Storyline Develops	STeLLA Strategy	Teacher Talk and Questions	Anticipated Student Responses	Possible Probe/Challenge Questions
		Summarize key science ideas.	 OK, we saw evidence of energy transfer when Mumford collided with Leroy. The speed and energy of both boys changed after the collision. Mumford's speed and kinetic energy decreased, and Leroy's increased. Did you see something similar when the marbles collided in our earlier investigation? Show slide 6. Now let's read more about Mumford and Leroy's big crash. NOTE TO TEACHER: Distribute handout 4.2 (Mumford and Leroy's Big Crash, Part 3) and have students read it aloud as a class. Show slide 7. 	lost kinetic energy, and Leroy gained kinetic energy. Yes, the first marble slowed down and stopped, and the second marble started rolling. But it rolled farther than Leroy would have moved.	
			What new energy words did you see in this reading? What did you learn about potential	Potential energy.	

energy? Potential energy is energy you can't see, hear, or feel. Mumford head potential energy because he was sitting	
how is	

Time	Phase of Lesson and How the Science Content Storyline Develops	STeLLA Strategy	Teacher Talk and Questions	Anticipated Student Responses	Possible Probe/Challenge Questions
			 Great discussion! Show slide 8. Our new vocabulary term is potential energy. Write this term in your science notebooks; then draw a table like the one on the slide and write the same words on top of the table to help you remember two important science ideas: To have potential energy, an object has to be off the ground (above ground level). The ground is the flat surface where an object moving from a higher place to a lower place eventually stops. The higher an object is off the ground (or above ground level), the more potential energy it has. Show slide 9. Do you remember the three pictures of Mumford and Leroy's collision from our last lesson? On that handout, you described the kinetic or motion energy of Mumford and Leroy is <i>Collision, Part 1</i>] and read over the descriptions you wrote last time. 		

Time	Phase of Lesson and How the Science Content Storyline Develops	STeLLA Strategy	Teacher Talk and Questions	Anticipated Student Responses	Possible Probe/Challenge Questions
			Now let's think about the potential energy in Mumford and Leroy's big crash.		
			NOTE TO TEACHER: <i>Distribute</i> <i>handout 4.1 (Mumford and Leroy's</i> <i>Collision, Part 2.)</i>		
			On this handout, I'd like you to show where you think <i>potential energy</i> is located in each picture and then write a description in the space provided.		
			Individual work time.		
			Show slide 10.		
			Whole-class share-out: Let's share our descriptions and ideas about potential energy. Make sure to point out where you labeled potential energy on each picture and tell us why you chose those locations.		
			NOTE TO TEACHER: <i>Display a copy</i> <i>of handout 4.1 (Mumford and Leroy's</i> <i>Collision, Part 2) on a document reader</i> <i>or overhead projector during this</i> <i>discussion so that you and/or students</i> <i>can point out locations on each picture</i>		
			as students share their ideas about potential energy.	I labeled Mumford with potential energy because	
			Look at the first picture on your handouts. Where did you label potential	he's sitting on his bike at the top of the hill, and he	

Time	Phase of Lesson and How the Science Content Storyline Develops	STeLLA Strategy	Teacher Talk and Questions	Anticipated Student Responses	Possible Probe/Challenge Questions
			energy and why? Who has potential energy?	isn't moving yet.	
			Does Leroy have potential energy in this	I don't think so. He's just sitting at the bottom of the hill on his bike.	
			picture?	I think Leroy has a little potential energy at the bottom of the hill because he's still on his bike.	Does anyone disagree or have anything to add?
			Where did you label potential energy in picture 2 and why? Would Mumford have potential energy here?	I don't know, because Mumford has kinetic energy riding down the hill. Can he have both at the same time?	
			What about picture 3? Where did you label potential energy and why? Do Mumford and Leroy have potential energy in this picture?	I don't think either Mumford or Leroy has potential energy because they're both at the bottom of the hill, and Leroy is lying on the	
			NOTE TO TEACHER: In picture 1, students should respond that they'd place a potential-energy label on Mumford because he's sitting on his bike at the top of the hill. In picture 2,	ground!	How does lying on the ground relate to potential energy?

Time	Phase of Lesson and How the Science Content Storyline Develops	STeLLA Strategy	Teacher Talk and Questions	Anticipated Student Responses	Possible Probe/Challenge Questions
		Ask questions to probe student ideas and predictions.	Mumford has kinetic energy because he's moving down the hill, but he also has potential energy because he hasn't reached the bottom of the hill yet. The idea that an object can have potential energy and kinetic energy at the same time is sometimes difficult for students to understand. In picture 3, Leroy has no potential energy because he's lying on the ground. Mumford may have a small amount of potential energy because he's still on his bike, which is higher than the ground. Mumford has the most potential energy at the top of the hill, and his potential energy decreases as he moves down the hill. Students will continue to explore these ideas in the next lesson, so don't be concerned if they don't fully understand energy transformation at this time. So what do you know about potential energy now? How would you describe it? NOTE TO TEACHER: Probe student ideas as they share what they know about potential energy. You may want to focus on the word potential and what it means, since some students may have heard the phrase "You have a lot of potential" and be thinking of potential in this sense. Also use the costume analogy to help students think of potential energy	Anything that is above or off the ground has potential energy, like my pencil on the table. The higher up something is, the more potential energy it has. As it gets lower and moves toward the ground, it has less potential energy.	What do others think about this? Does everyone agree? Can anyone add to these ideas? Can someone describe something else in the room that has potential energy?

Time	Phase of Lesson and How the Science Content Storyline Develops	STeLLA Strategy	Teacher Talk and Questions	Anticipated Student Responses	Possible Probe/Challenge Questions
			as energy wearing a costume that makes it invisible. Emphasize that potential energy is still energy even though we can't see it until it changes costumes again into something we can detect, such as kinetic energy.	It changed costumes and turned into kinetic energy!	If Mumford doesn't have as much potential energy halfway down the hill, where do you think his potential energy went?
10 min	Follow-Up to Activity		Show slide 11.		
	Synopsis: Students revisit the ramp-and-marble investigation from lesson 2 and describe the potential and kinetic energy of a marble as it rolls down ramps of varying heights. Then they relate ideas about energy transformation to Mumford as he rode his bike down the hill.		NOTE TO TEACHER: For this discussion, set up a ramp-and-marble model for students to refer to as they describe the potential and kinetic energy of the marbles. Alternatively, you could project the images of Ramps 1 and 2 from handout 2.1 (Ramps, Speed, and Energy) so that students can compare them. Think back to our ramp-and-marble investigation earlier in this unit.		
	 Main science idea(s): An object above the ground, such as on a table or at the top of a hill, has potential energy. Potential energy can transform into kinetic energy as the object moves from a higher position to a lower position (i.e., 	Engage students in analyzing and interpreting data and observations.	In this investigation, we used different ramp heights and rolled a marble down each ramp to see whether the marble had more energy on the higher ramp or the lower ramp. On the steeper ramp, the marble was higher off the ground. What did you discover about the marble's speed as it moved down each ramp? How fast did it move down each ramp?	The marble moved faster	

Time	Phase of Lesson and How the Science Content Storyline Develops	STeLLA Strategy	Teacher Talk and Questions	Anticipated Student Responses	Possible Probe/Challenge Questions
	Energy isn't created; it comes from somewhere. Therefore, the kinetic energy of an object can come from potential energy.		How would you describe the marble's motion energy or <i>kinetic energy</i> on each ramp? What about the marble's <i>potential</i> <i>energy</i> at the top of each ramp? Can you relate the height of the ramp to the potential energy of the marble? Make sure to explain your reasoning. Show slide 12.	down the steeper ramp and slower down the other ramp. The faster marble had more kinetic energy on the steeper ramp, and the slower marble on the lower ramp had less kinetic energy. The marble at the top of the steeper ramp had more potential energy because it was higher off the ground. The marble at the top of the lower ramp had less potential energy because it wasn't as high off the ground.	
		Engage students in analyzing and interpreting data and observations. Engage student in using and applying new science ideas in a	Now let's use these ideas from our ramp- and-marble investigation to think about the potential and kinetic energy of Mumford as he rode his bike down the hill in our story. NOTE TO TEACHER: Have students refer to handout 3.3 (Mumford and Leroy's Collision, Part 1) and handout		

Time	Phase of Lesson and How the Science Content Storyline Develops	STeLLA Strategy	Teacher Talk and Questions	Anticipated Student Responses	Possible Probe/Challenge Questions
		variety of ways and contexts.	 4.1 (Mumford and Leroy's Collision, Part 2) during this discussion. Can someone describe Mumford's potential energy as he rode his bike down the hill? CONTENT NOTE TO TEACHER: The potential energy of an object (Mumford) decreases as it moves down a hill because it's getting closer to ground level, where it would have no more potential energy. 	Mumford's potential energy decreased as rode down the hill. Because he was getting closer to the ground, and we know that the higher an object is off the ground, the more potential energy it has.	How do you know? What's your evidence?
			Can someone describe Mumford's <i>kinetic energy</i> as he rode down the hill? CONTENT NOTE TO TEACHER: <i>The kinetic energy of an object</i> <i>(Mumford) increases as it moves down a</i> <i>hill because it picks up speed (moves</i> <i>faster).</i> Now can someone describe Mumford's <i>potential energy and kinetic energy</i> as he rode down the hill?	Mumford's kinetic energy increased as he rode down the hill. Because our ramp investigations showed that the faster an object moves, the more kinetic energy it has. <i>Example of a complete</i> <i>answer:</i> Mumford had potential energy at the top of the	How do you know? What's your evidence?

Time	Phase of Lesson and How the Science Content Storyline Develops	STeLLA Strategy	Teacher Talk and Questions	Anticipated Student Responses	Possible Probe/Challenge Questions
				hill. When he rode down the hill, his potential energy decreased as he got closer to the ground. His kinetic energy increased as he rode down the hill because he was moving faster and faster. As Mumford got closer to the bottom of the hill, he was moving faster, so his kinetic energy increased. He was also getting closer to the ground, so his potential energy decreased.	Can you relate Mumford's kinetic energy to the potential energy he had at the top of the hill?
				The potential energy Mumford had at the top of the hill changed to kinetic energy as he rode down the hill. We don't know how steep the hill was, but if it was really steep, Mumford would have had more potential energy at the top of the hill. And with more potential energy at the	

Time	Phase of Lesson and How the Science Content Storyline Develops	STeLLA Strategy	Teacher Talk and Questions	Anticipated Student Responses	Possible Probe/Challenge Questions
			The idea that energy changes costumes is a challenging one, so we'll continue exploring this idea in the next lesson and see if we can gather more information about potential and kinetic energy.	top, he would have had more kinetic energy moving down the hill. So he would have been moving faster.	
6 min	 Synthesize/Summarize Today's Lesson Synopsis: The teacher revisits the focus question, and students write a preliminary answer using science ideas about energy and moving objects. Main science idea(s): An object above the ground, such as on a table or at the top of a hill, has potential energy. Potential energy can transform into kinetic energy as the object moves from a higher position to a lower position (i.e., toward ground level). Energy isn't created; it comes from somewhere. 	Highlight key science ideas and focus question throughout. Engage students in making connections by synthesizing and summarizing key science ideas.	Show slide 13. Today, we explored the focus question, Where does the energy of a moving object come from? Use everything you know about energy and moving objects to answer this question in your science notebooks. Use the sentence starter on the slide: I think the energy of a moving object comes from Think about our ramp-and-marble investigations and our story about Mumford and Leroy's big crash and use the evidence we found. Make sure to include science ideas about potential and kinetic energy, energy transfer when objects collide, and the position of objects in relation to the ground.		

Time	Phase of Lesson and How the Science Content Storyline Develops	STeLLA Strategy	Teacher Talk and Questions	Anticipated Student Responses	Possible Probe/Challenge Questions
	Therefore, the kinetic energy of an object can come from potential energy.				
1 min	Link to Next Lesson Synopsis: The teacher foreshadows the next lesson in which students will gather more information about potential and kinetic energy to explain how energy changes costumes.	Link science ideas to other science ideas.	Show slide 14. In our next lesson, we'll continue exploring science ideas about potential and kinetic energy using diagrams like the one on this slide. Marble's Energy PE KE Let's see if we can figure out how energy changes costumes!		