## Transcript for Video Clip 6.6

| Teacher/video ID: | Jeff Evans, 6.6_stella_SEC_evans_L5_c4 |
| :--- | :--- |
| Content area: | The Sun's effect on climate |
| STeLLA strategy: | Set the purpose with a focus question or goal statement (SCSL strategy B). Engage <br> students in making connections by synthesizing and summarizing key science ideas <br> (STL strategy 7). Select activities that are matched to the learning goal (SCSL <br> strategy C). |
| Context: | In this lesson on the Sun's effect on climate, students observe that not all locations <br> at a given latitude have the same average temperature, which indicates that factors <br> other than the angle of sunlight and Earth's orbit and tilt may impact the climate of a <br> region. In this clip, students examine temperature data for three US cities. |

## Video Clip 6

| Time | Speaker | Discussion |
| :--- | :---: | :--- |
| $0: 00: 01.6$ | T | You know, we may not do this, but with this data, for each city, we could find the <br> average ... |
| $0: 00: 09.9$ | SN | Temperature? |
| $0: 00: 10.4$ | T | average temperature overall, yes? |
| $0: 00: 13.3$ | SS | Yes. |
| $0: 00: 14.1$ | T | We ... we could. We could also find the mode, couldn't we? |
| $0: 00: 18.6$ | SS | Yes. |
| $0: 00: 19.4$ | T | And we could easily find the min-max, yes? |
| $0: 00: 21.7$ | SN | Easily. |
| $0: 00: 22.7$ | SS | Yes. |
| $0: 00: 23.2$ | T | Easily. So we could find [the] min-max, we could find the mode, and we could find <br> the average of the averages. So we could say for Colorado Springs, Colorado, <br> according to this data table- |
| $0: 00: 33.6$ | SN | I would say low 60s. |
| $0: 00: 34.4$ | T | How would we find that? How would we find that average? |
| $0: 00: 36.4$ | SN | We would ... |
| $0: 00: 37.2$ | SN | Add all the temperatures up and divide it by how many temperatures there are. |
| $0: 00: 42.0$ | T | Nice job, Sarah. |
| $0: 00: 42.1$ | SN | Which is 12. |
| $0: 00: 43.1$ | T | All right. So that would be a simple piece of math, yes? |
| $0: 00: 46.1$ | SN | Yes. |
| $0: 00: 46.3$ | T | And we could do that. So we could say ... In fact, I think that would ... that would <br> be a good idea when we get everything graphed. |
| $0: 00: 53.6$ | T | And we could say for those three cities-St. Louis, Missouri; Colorado Springs, <br> Colorado; and San Francisco, California- we could say according to this data, |
| $0: 01: 02.9$ | T | the average temperature for the entire 12-month period is X degrees, and there's our <br> variable X, yes? |


| $0: 01: 09.8$ | SN | Yes. |
| :--- | :---: | :--- |
| $0: 01: 10.5$ | T | And then we could compare average ... the average of the averages. And we'd have <br> one value per city. |
| $0: 01: 17.0$ | T | So we could say St. Louis, Colorado Springs, San Francisco and look at them. Simply <br> from this data table. |

