Faculty

Jill P. Adler, Ph.D., Professor. Research interests are on drug and vaccine development with an emphasis on liposome delivery systems for the treatment of microbial infections, in particular fungal and viral infections. Recent work has been focused on the interplay between the adaptive and innate immune response in both fungal and viral infections, and the interactions between anti-microbial drugs and the immune response.
Selected publications

Steve Alas, Ph.D., Professor. Cancer Biology/Immune Response to Human Prosthetic Biometals. My laboratory studies the DNA damage response and DNA repair mechanisms in various tumor cell model systems, particularly breast cancer, colon cancer and leukemias. A major area of our studies is to examine genes that play a role in detecting damage to cells' DNA and whether mutations in those genes found in tumor cells contribute to resistance against chemotherapeutic drugs. The Breast Cancer 1 gene (BRCA1) and a family of death & survival genes (Bcl-2 family) are the central genes in our studies. Another avenue of research is the study of novel biometals, initially developed by the US Air Force, that may be new generation materials in the development of human implants and prosthetics. In collaboration with engineers at Cal Poly, our projects involve examining the immune response against the novel alloys, bone degradation caused by activation of immune cells upon implant exposure, and also the ability of bacteria to colonize both tradition biometals used in human prosthetics (titanium, stainless steel) and the new generation alloys.
Selected publications

Peter Arensburger, Ph.D., Associate Professor. Bioinformatics and genomics. My laboratory studies the role played by non-gene sequences both in regulating gene expression and influencing genome evolution. The DNA sequences we study include transposable elements and other repeated sequences found in a variety of genomes. We also study the role that small RNAs play in regulating these sequences. Our work is primarily centered on the analysis of large data sets (such as whole genome sequences as well as small RNA and RNAseq sequencing libraries) using a variety of computer analysis techniques; we use both open source software and develop our own custom computer scripts for data analysis.
The genomes we study come from a variety of species, as we center many of our research questions on specific types of DNA sequences rather than on research organisms. My students and I have published research on the genomes of such varied organisms as mosquitoes, birds, and viruses. Nevertheless, in the last few years we have taken a particular interest in the genomes of spiders, a woefully understudied group of arthropods.

Paul Beardsley, Ph.D., Associate Professor. My research interests include K-12 science education and botany. Accordingly, I have a joint position at Cal Poly Pomona with the Center for Excellence in Mathematics and Science Education (CEMaST) and the Department of Biological Sciences.
Selected publications

Ed Bobich, Ph.D., Professor. Functional plant morphology. All plant structures and processes are affected by their environment. In our lab we try to link interesting and novel plant structures, like lignotubers in walnuts, or cells, such as gelatinous fibers in desert plants, to their function. Thus, our research often incorporates several different fields, usually plant anatomy, biomechanics, and physiological ecology. Students in the lab have studied plants in the local woodlands, coastal sage scrub, and the Sonoran Desert and have addressed some long-standing questions through their research.
Selected publications

Andrea Bonisoli Alquati, Ph.D., Assistant Professor. Environmental Toxicology, Physiological Ecology. Our research aims at explaining variation among individuals and across species in their physiological and genetic responses to environmental disturbance and contamination. This is examined mainly in the field, using landscape-level experimental conditions created by environmental disasters. In particular, research in the lab focuses on the nuclear disasters of Chernobyl and Fukushima, and on the Deepwater Horizon oil spill. The response of individual organisms is assessed using genetic, physiological and behavioral analyses. Variation across species in their exposure and sensitivity to contamination is analyzed in relationship to the life-history and ecological traits of the different species, and used to predict their phenotypic and evolutionary responses to contamination over time.

Kristin R. Bozak, Ph.D., Professor. Molecular Biology, Plant Physiology. Expression of genes involved in ripening of avocado; hormonal and developmental control of gene expression; genetic elements involved in regulation and expression. Tissue culture of endemic and/or rare plant species with varying hormone treatments.
Selected publications

Nancy E. Buckley, Ph.D., Professor. Cell, Molecular, and Developmental Biology
Investigating the role of cannabinoids and cannabinoid receptors on immune function. We recently reported that chronic THC treatment reduces mouse resistance to a systemic Candida albicans (C. albicans) infection as assessed by survival, tissue fungal load and cytokine production (Blumstein et al. 2014. PLoS One 9:e103288). Current and future goals include investigating mechanisms by which THC and other cannabinoids alter immune function in immune competent and immune compromised mice.
Investigating the role of garlic on immune function. We recently reported that garlic stimulates lipopolysaccharide (LPS)-induced tumor necrosis factor-alpha (TNF-α) production from the J774A.1 murine macrophage cell line in a time and dose dependent manner (Sung et al. 2014. Phytother Res.). Current and future studies include investigating mechanism by which garlic and allicin, the major component of crushed garlic, alter LPS-induced TNF-α production. Our current and future studies also include investigating the effect of garlic and allicin on cytokine production from different immune cells challenged with C. albicans.
Selected publications

Jeremy T. Claisse, Ph.D., Associate Professor. Quantitative Marine Ecology. Research interests include life history and ecology of marine organisms associated with reef ecosystems, including kelp forest systems here in California, coral reef systems in Hawaii and the Caribbean, and manmade reef habitats (e.g., artificial rocky fishing reefs and breakwaters, submerged structures of oil platforms and offshore renewable energy developments), with a particular emphasis on marine conservation, fisheries management, and marine protected areas.
- Lab website
- Google Scholar profile
- ResearchGate profile
- Linkedin profile (login required)

Wendy J. Dixon, Ph.D., Professor. Microbiology, Cell and Molecular Biology; Elucidation of phosphorylation pathways involved in regulating cell-cycle genes and initiating DNA replication in budding yeast; Location, movement and interactions of DNAreplication initiators during the cell cycle; Effect of over-expression of cell-cycle genes on cell growth and tumor formation.
Selected publications

Douglas M. Durrant, Ph.D., Assitant Professor. The long-term goal of our lab is to determine how dendritic cells (DCs) impact viral clearance and repair in the brain during viral encephalitis. We study West Nile virus, a neurotropic flavivirus, which has emerged as a significant cause of neuronal injury and inflammation in humans that can potentially result in death. Therefore, rapid, yet tightly controlled responses that restrict viral spread while limiting tissue damage within the brain are essential. In the brain, DCs are localized in an area between the periphery and the brain parenchyma, strategically positioning them to govern the trafficking and effector functions of infiltrating leukocytes. We want to elucidate the mechanisms utilized by these DCs to either contain viral spread or minimize immunopathology. Currently, we are interested in the CD11c+DEC205+ DC subset, which have been shown to be critical for effector T cell activation. Our hypothesis is that during WNV encephalitis, the local environment in which the DC-T cell interaction takes place provides critical inflammatory cues to support the development of the CD11c+DEC205+ to be fully immunogenic impacting on viral clearance. In addition, we hope to target the CD11c+DEC205+ DCs with a hybrid antibody that carries WNV peptide antigens and determine whether this boosts immunity during WNV encephalitis.
Jason Ear, Ph.D. Assistant Professor. My research interest includes generating cell-based and zebrafish models of human diseases. The diseases that my lab focus on is centered on those involving mutations in the scaffold protein Daple, a regulator of Wnt and G-protein signaling. Mutations in Daple have been identified in patients with hydrocephalus, spinocerebellar ataxia, and some cancers. Generating these models will help to provide further insight into the underlying mechanisms of these diseases.
Another focus of the lab is to understand how post-translational modifications (particularly protein phosphorylation) of PDZ-binding motifs, PBMs, regulate interaction with PDZ domains. PDZ domains are one of the most abundant protein domains and play a key role in signal transduction. PBMs bind to PDZ domains with high specificity and are tightly regulated. Disruption of PDZ-PBM interactions have been found to occur in maladies such as cancers, neurological disorders, and viral infections. Further insight into the complex regulation between PDZ domains and PBMs will aid in understanding how these interactions can be leverage for therapeutics.

Frank Ewers, Ph.D., Emeritus Professor. Plant physiological ecology, anatomy and evolution. Water transport, leaf water absorption, plant structure and biomechanics are all examined to determine whether form follows function. This includes the biology of chaparral and coastal sage scrub plants of California, mangrove trees of Mexico, and tropical climbing plants. With collaborators at Cal Poly Pomona one focus is on native and invasive plants of the Voorhis Ecological Reserve. A new research area involves the uptake of fog and mist by leaves of inland, coastal and Channel Island chaparral species.
- Google Scholar profile
- ResearchGate profile
- FRESCA profile
- Linkedin profile (login required)

Kristine Behrents Hartney , Ph.D., Emeritus Professor. Experimental field studies. Marine biology, ecology of temperate water reef fishes, and fish/invertebrate associations. Desert/marine system parallels, population dynamics and patterns of sexual expression in Atriplex hymenelytra (Chenopodiaceae). Effects of teaching innovations on learning outcomes.
Selected publications
Juanita K. Jellyman, Ph.D. Assistant Professor. My research interests are in maternal and fetal physiology with an emphasis on the endocrine and mechanisms that regulate fetal development in utero. The long-term goal is to identify how the intrauterine environment programs fetal physiology and increases the risk of chronic diseases, such as obesity and type 2 diabetes, in the offspring. My lab uses an integrated approach from physiological systems to organ, cellular and molecular levels. The overall objective of these studies is to determine how adverse intrauterine environments alter growth, body composition, metabolism and the function of the endocrine system in later life. We study adverse intrauterine environments induced by maternal diet and obesity, by stress during pregnancy, and by exposure to environmental chemicals and drugs. In addition, we are currently investigating how time-restricted feeding, diet and exercise affect the growth and metabolic health of cattle and humans. These studies have applications to human health and medicine, veterinary medicine, as well as the food and livestock industries.

Glenn H. Kageyama, Ph.D., Professor. Neurobiology; Enzyme histochemistry, Electron microscopy. Developmental plasticity of central nervous system synapses. Development and plasticity of oxidative and glycolytic pathways in the central nervous system.
Selected publications

Craig W. LaMunyon, Ph.D., Professor. Research in my lab deals primarily with the genetics of development in the nematode C. elegans. Our specific focus is the final stage of sperm development, the drastic cellular reorganization that accompanies sperm activation. A complex signaling pathway stimulates sperm activation, and my lab is identifying the gene products that participate in the signaling pathway. We have identified one gene product that inhibits activation until its inhibition is relieved by the signaling. Interestingly, this inhibitory gene product, SPE-4, is a homolog of the human protein Presenilin1, which when mutated causes early onset Alzheimer's Disease. By focusing on the functions of gene products involved in sperm cell development we can learn about human disease genes. Our lab also investigates vitamin transporters in C. elegans. We have investigated a knockout of the folate transporter FOLT-1. Knockout worms are sterile and metabolically compromised as a result of folate deficiency. Our results suggest that much of the detrimental phenotype is caused a build up of homocysteine, a toxic intermediate in folate metabolism. We have been able to improve the phenotype of the knockout mutants by supplementing them with thiamin, and amazingly, the worms upregulate thiamin uptake when they are folate deficient. Women with folate deficiency are at risk for having children with birth defects, and our results suggest that thiamin supplementation may be an effective therapy. We are also investigating the riboflavin transporter, which has an even more detrimental effect on worm phenotype when it is knocked out. We will soon begin using vitamin transporter knockouts as a novel means of controlling pest nematodes.
Selected publications

A. Kristopher Lappin, Ph.D., Professor. I have broad interests in the ecological morphology, functional morphology, biomechanics, behavioral ecology, and evolutionary biology of animals. A major component of research in my lab has been the use of direct measures of animal performance, particularly bite force, to interpret predator-prey interactions and social behavior. Specific topics of investigation have included, for example, patterns of sexual dimorphism, animal combat and territoriality, scaling of animal performance, and how evolutionary modifications of muscle physiology can facilitate specialized behaviors.
Selected publications

Joan M. Leong , Ph.D., Professor. Plant-insect interactions; pollination ecology, agricultural crop pollination; biology and ecology of native bees, foraging behavior of bees, conservation and restoration of vernal pool habitats; plant reproductive biology.
Selected publications

Wei-Jen Lin , Ph.D., Professor. Microbiology and bacterial pathogenesis. Molecular mechanisms of pathogenesis of bacteria and their toxins. Including biochemistry of bacterial toxins, antimicrobial controls, and regulation of gene expression.
Selected publications

Junjun Liu, Ph.D., Professor. This lab studies the molecular mechanism underlying the regulation of breast cancer cell invasion that is the initial step towards metastasis. Currently, we focus on the regulation of cell invasion by ubiquitination and deubiquitination mechanism. The lab also studies mitosis, particularly the events regulated by polo-like kinase 1 (Plk1). Plk1 plays a key role in cell cycle and has emerged as a promising drug target for cancer therapy. We study how Plk1 regulates these mitotic events by phosphorylating its substrates.
Selected publications

- Google Scholar profile
- Linkedin profile (login required)
- Email: fkmercer@cpp.edu






Jamie C. Snyder, Ph.D., Assistant Professor. Research interests: Virology and Environmental Microbiology. My research explores the role of viruses in the evolution and ecology of microbes inhabiting natural environments. We believe that by further studying these interactions we will gain a deeper understanding of microbial population structure and evolution. In addition, we are working to describe in detail the first complete archaeal virus replication cycle. Recently, we determined that one archaeal virus (Sulfolobus turreted icosahedral virus – STIV) utilizes the same cellular proteins that HIV-1 uses during its replication cycle. We believe by further elucidating the replication cycles of STIV, we will achieve a better understanding of all archaeal viruses (maybe even bacterial and eukaryal viruses) and will be used to establish links between viruses infecting all the domains of life.
Selected publications
Christos Stathopoulos, Ph.D., Professor. Medical Microbiology; Molecular Biotechnology; Bacterial Pathogenesis; Vaccine Development. Current research projects in my laboratory focus on various aspects of the secretion of virulence factors in gram-negative bacterial pathogens and their role in microbial pathogenesis. The majority of our efforts are spent on (i) the elucidation of the molecular mechanism of autotransporter secretion across the gram-negative bacterial cell envelope (Type V secretion), (ii) the identification and characterization of novel virulence factors of Yersinia pestis, the causative agent of plague, and (iii) the identification of novel protective antigens for the development of vaccines against plague and infectious diseases caused by pathogenic E. coli strains. Our approaches include molecular biology methodologies, genomics, proteomics, and experiments with animals.
Selected publications

Andrew D. Steele, Ph.D., Associate Professor. How are activity and physiological rhythms entrained by feeding? This is an outstanding question in neuroscience that we seek to answer. Our work suggests that the neurotransmitter dopamine is crucial to establish food entrained circadian rhythms and that it is acting via dopamine receptor 1 neurons in the dorsal striatum. This research problem has important biomedical implications for obesity and anorexia as well as basic science interest in circadian time keeping and the neurobiology of behavior.

Robert Talmadge, Ph.D., Professor. Primary research interests include identification of cellular mechanisms involved in skeletal muscle adaptation following chronic alterations in muscle activity, such as spinal cord injury, space flight, exercise and disease states such as muscular dystrophy and congestive heart failure. Other research interests include age-associated sarcopenia, comparative muscle physiology, regulation of muscle growth and neural adaptation of the spinal cord locomotor networks following spinal cord injury.
Selected publications

Ángel A. Valdés, Ph.D., Professor. Valdés' research focuses on the systematics, taxonomy and biogeography of sea slugs. Seaslugs are a diverse group of almost exclusively marine, hermaphroditic organisms. Sea slugs are closely related to pulmonate gastropods (terrestrial snails and slugs) and display remarkable adaptations to different environmental conditions in the ocean. About 6,000 species are known worldwide but new species are constantly been discovered and named. A particularly rich source of new species is the deep sea, which remains largely unexplored. Valdés uses morphological characteristics and molecular markers to reconstruct phylogenetic relationships of different lineages of sea slugs and shed light on the evolution of this group. He is also interested in the description of new species and cataloging the biological diversity of these fascinating organisms.

Yuanxiang (Ansel) Zhao, Ph.D., Professor. Stem cell biology. We are interested in using human mesenchymal stem cells as our in vitro cellular model to understand the molecular mechanisms underlying human adipogenesis and osteogenesis and study cellular toxicity of selected pharmaceutical drugs and environmental chemicals.