| Program Learning
Outcome | Student Learning Outcome | Courses where each SLO is
addressed (one of the
bolded courses will be
assessed; selection
depends on prior data) | Assessment activity
(signature assignment)
used to measure each
SLO | Assessment tool
used to measure
outcome
success | How assessment data
will be reported as
evidence SLO
performance criteria
have been met | Designated personnel
to collect, analyze,
interpret SLO data for
the program | Student learning
outcome data
dissemination
schedule | Closing the loop
strategies | |--|--|---|--|--|---|---|---|---| | Theory and Practice (PLO 1):
Students will apply fundamental
chemical principles to solve
problems, interpret data and
explain outcomes. | SLO 1. Students will compare, contrast and predict physical and chemical properties based on atomic and molecular structure. Students will apply these principles to the chemistry of living systems and demonstrate the ability to solve quantitative, interdisciplinary, and real-world problems. | | embedded exam
questions, ACS
standardized final,
periodic MFT test | grading rubric | % of students met or
exceeded competent
performance | collected by course
instructor(s);
analyzed by
Curriculum
Committee | Department
assessment
meeting Spring
semester | developing active-
learning
strategies
focused on LO | | Laboratory Skills and Safety (PLO 2): Students will use a variety of laboratory techniques to safely conduct chemical experiments and procedures. | SLO 2. Students will be able to design and execute an experimental procedure, work independently, interpret experimental results, and draw a reasonable, accurate conclusion. Students will synthesize, isolate, purify and characterize compounds using modern methods and instrumental techniques. | CHM 1210L, 1220L CHM
2210L, CHM 3420L, CHM
3430L, CHM 3520L | sample laboratory
reports | grading rubric | % of students met or
exceeded competent
performance | collected by course
instructor(s);
analyzed by
Curriculum
Committee | Department
assessment
meeting Spring
semester | modifying lab
exercises and
experiments | | | SLO 3. Students will observe safe practices in the laboratory and will know how to respond in an emergency. Students will learn to gather hazardous materials information and will recognize and respond properly to potential hazards of handling chemicals and chemical waste. | CHM 1210L, 1220L, CHM
2210L, CHM 3140L,
3150L CHM 3270L,
CHM 3420L, CHM 3430L,
CHM 3520L | sample laboratory
report, embedded
quiz questions | grading rubric | % of students met or
exceeded competent
performance | collected by course
instructor(s);
analyzed by
Curriculum
Committee | Department
assessment
meeting Spring
semester | modifying lab
exercises and
experiment;
improving
training and
resources | | Communication and Information Literacy (PLO 3): Students will develop and utilize effective computer, written and oral communication skills in a scientific setting. | SLO 4. Students will use computer technology to gather, process, analyze, and present chemical data, and communicate critical analysis of scientific information through written reports, laboratory notebooks, and oral presentations. | CHM 2210/2210L, CHM
2910A, CHM 3140L,
3150L CHM 3270L, CHM
3420/L, CHM 3430/L,
CHM 3520L | sample laboratory
report/notebooks | grading rubric | % of students met or
exceeded competent
performance | collected by course
instructor(s);
analyzed by
Curriculum
Committee | Department
assessment
meeting Spring
semester | modifying lab
exercises,
training and
resources | | | SLO 5. Students will use chemical literature and computer resources to gather research information. | CHM 2210/L, CHM
2910A, CHM 3270L,
CHM 3420/L, CHM
3430/L, CHM 3520L | oral presentation | presentation
rubric | % of students met or
exceeded competent
performance | collected by course
instructor(s);
analyzed by
Curr.Committee | Department
assessment
meeting Spring
semester | modifying lab
exercises,
training and
resources | | Readiness for Career or
Advanced Degree (PLO 4):
Chemistry major graduates will
be prepared to pursue a career
or an advanced degree in
chemistry or a chemistry-
related field. | SLO 6. Students will demonstrate the ability to function as practicing chemists, through activities such as undergraduate research, Senior Project and Co-op. Through coursework and laboratory experiences, students will work successfully both independently and as part of a team. | CHM 3420L , CHM
3430L , CHM 3520L,
CHM 4410, CHM 4610,
4620, 4630 | Exit survey for graduating seniors, laboratory reports | survey
analysis,
grading rubric | % of students
participating in UG
research, team
projects | collected by course
instructor(s);
analyzed by
Curriculum
Committee | Department
assessment
meeting Spring
semester | implement
suggestions from
survey | | | SLO 7. Students will benefit from faculty mentoring and academic advising. Through organizations and activities such as the SMACS Chemistry Club, alumni panels, seminars, and Professor for a Day, students will explore career opportunities and participate in career and graduate school planning. | CHM 2910A | Exit survey for graduating seniors | survey
analysis, | % of students
reporting benefit | collected by course
instructor(s);
analyzed by
Curriculum
Committee | Department
assessment
meeting Spring
semester | implement
suggestions from
survey | PLOs reflect the core themes and discipline content areas of the major and should be natural outgrowths of the university ILOs. Program outcomes are best written with a strong focus on describing the characteristics of an ideal program graduate within the specific discipline. Five or six program outcomes tend to be both adequate and manageable. Student learning outcomes clearly state the specific and measureable behaviors students will display to verify learning has occurred. Key characteristics of student learning outcomes include 1) clarity, 2) specificity, (this means they are worded with active verbs stating observable behaviors) and, 3) measurability. Every student learning outcome should be directly aligned with and related to one or more program learning outcomes. SLOs should be limited in number (eight or less) to maintain manageability. An SLO (or a combination of two SLOs) should be assessed with only one assignment (oftentimes called a signature assignment) and in only one course.