Basic Course Information: CS 530

I. Catalog Description

II. Required Coursework and Background
Pre-requisite(s): CS 331 or consent of instructor

III. Expected Outcomes
On successful completion of this course, students will be able to:
1. Master the principles and techniques underlying the design and analysis of efficient computer algorithms.
2. Apply specific algorithm design techniques to design good algorithms for several well-known mathematical problems
3. Analyze the resource requirements of an algorithm
4. Prove the correctness of an algorithm

Outcomes of this course will build student capacity in each of the following areas as defined by programmatic objectives for the computer science major.

P-SLO 1. An ability to frame and model real-world problems that can be addressed computationally, and evaluate multiple computational approaches and select the most appropriate one.

P-SLO 3. An ability to build applications, either individually or in a team, that are robust, reliable, and maintainable.

IV. Instructional Materials
Texts may vary with instructor and over time. Examples of possible texts include:
Tarjan, Data Structures and Network Algorithms, SIAM, 1983

V. Minimum Student Material
Course textbooks

VI. Minimum College Facilities
Computer laboratories, Blackboard, classroom with a projection system

VII. Course Outline
Algorithm Analysis: Computational models, complexity measures, asymptotic notation, average, worst-case, and amortized analyses, constructing and solving recurrence relations, lower bounds, invariants and correctness proofs.
Classic Problems: Graph problems, matching and network flow, computational geometry, fast Fourier transform, sorting and searching, pattern matching, balanced tree schemes, sorting networks, data encoding, etc.
Advanced Topics: NP-complete and NP-hard problems, polynomial time restrictions, approximation schemes, parallel algorithms.

VIII. Instructional Methods
Lecture
Problem-solving
Discussion
Project-based learning

IX. Evaluation of Outcomes
A. Student Assessment
i homework assignments
ii term paper
iii exam

B. Meaningful Writing Assignment
Students shall produce written solutions or proofs to problems that are assigned as homework and explain their reasoning. Students are required to write a term paper after conducting a research study on an advanced topic of computer algorithms.

C. A Matrix of Course Student Learning Outcomes vs Methods of Assessment
If the course is being evaluated for accreditation purposes, approved department accreditation assessment tools will additionally be utilized.

<table>
<thead>
<tr>
<th>Course Learning Outcomes</th>
<th>Methods of Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master the principles and techniques underlying the design and analysis of efficient computer algorithms</td>
<td>x</td>
</tr>
<tr>
<td>Apply specific algorithm design techniques to design good algorithms for several well-known mathematical problems</td>
<td>x</td>
</tr>
<tr>
<td>Analyze the resource requirements of an algorithm</td>
<td>x</td>
</tr>
<tr>
<td>Prove the correctness of an algorithm</td>
<td>x</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Homework Assignments</th>
<th>Team Paper</th>
<th>Exams</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>