California State Polytechnic University, Pomona	
Computer Science Department

Course Title: 			Software Engineering
Course Number: 		CS 4800
Units:				3 units
CS number:			C-2
Component:			Lecture
Instructional Mode: 		Face-to-Face and web-assisted
Grading Basis:			Graded only
Repeated Basis:		May be taken only once
Cross listed Course: 		N/A
Dual-listed Course: 		N/A
Major course/Service course/GE course: Major course
Date Prepared: 		August 2019
Prepared by: 			Salam Salloum and Yu Sun

COURSE DESCRIPTION

I. Catalog Description

CS 4800 Software Engineering (3)

Models of the software development process and metrics. Software requirements and specifications. Methodologies, tools and environments. Human-computer interaction. Software architecture, design and implementation techniques. Project management. Cost estimation. Testing and validation. Secure software development life cycle and common software security issues. Automated build, deployment and continuous integration. Maintenance and evolution.

Pre-requisite(s): CS 3310 with a grade of C or better, or consent of instructor.

II. Expected Outcomes

On successful completion of this course, students will be able to:
· Know the history and current status of software production and the scope of software engineering practice.
· Explain the software lifecycle and models of software process (such as Spiral, TSP, RUP, Scrum, or XP).
· Comprehend the models, techniques and software tools for project planning and management (such as IDEs, defect tracking systems, version control systems, or estimation tracking systems).
· Learn models for estimating software cost and deadlines (such as function points, story points, COCOMO, or wide-band delphi).
· Be aware of the differences among various methodologies for software development.
· Gain experience in the principles and techniques of effective user interface design
· Use the techniques for capturing user requirements and specifying software (such as contextual inquiry, user stories, scenarios, or formal specifications).
· Design and architect software systems using design principles (such as cohesion, coupling, abstraction, or information hiding) and design patterns.
· Design and implement software systems by following secure software development life cycle. Discussion of common software security issues.
· Read and create design diagrams (such as class diagrams, state charts, object diagrams, or dataflow diagrams) by hand and with tool support.
· Take a specification or a design diagram of a large system and implement a feature set.
· Appreciate software quality assurance techniques (such as white-box testing, black-box testing, regression, unit tests, program analysis, or inspection).
· Acquire experience in team-oriented software development

Outcomes of this course will build student capacity in each of the following areas as defined by programmatic objectives for the computer science major.
· P-SLO 1: An ability to apply knowledge of computing and mathematics appropriate to the discipline.
· P-SLO 3: An ability to design, implement, and evaluate a computer-based system, process, component, or program to meet desired needs.
· P-SLO 4: An ability to function effectively on teams to accomplish a common goal.
· P-SLO 5: An understanding of professional, ethical, legal, security and social issues and responsibilities.
· P-SLO 6: An ability to communicate effectively with a range of audiences.
· P-SLO 7: An ability to analyze the local and global impact of computing on individuals, organizations, and society.
· P-SLO 8: Recognition of the need for and an ability to engage in continuing professional development.
· P-SLO 9: An ability to use current techniques, skills, and tools necessary for computing practice.
· P-SLO 10: An ability to apply mathematical foundations, algorithmic principles, and computer science theory in the modeling and design of computer-based systems in a way that demonstrates comprehension of the tradeoffs involved in design choices.
· P-SLO 11: An ability to apply design and development principles in the construction of software systems of varying complexity.

III. Instructional Materials

Required text:
Roger Pressman, Software Engineering: A Practitioner's Approach, 6th Edition, McGraw-Hill, 2005.

Ian Sommerville, Software Engineering, 7th Edition, Addison-Wesley, 2006.

Reference:
Stephen Schach, Object-Oriented & Classical Software Engineering, 5th Edition, McGraw-Hill, 2005.

Eve Andersson, Software Engineering for Internet Applications, MIT Press, 2006

Alan Koch, Agile Software Development, Auerbach Publications, 2004

John W. Horch, Practical Guide to Software Quality Management, 2nd Edition, Artech House, 2003

Valentino Lee, Mobile applications : architecture, design, and development, Prentice Hall, 2004

Nicolai Josuttis , SOA in practice, O'Reilly, 2007

Mark Endrei, Patterns: service-oriented architecture and web services, IBM Corp., 2004

IV. Minimum Student Material

Textbook and class handouts

V. Minimum College Facilities

A classroom with a projection system, a computer laboratory

VI. Course Outline

· Introduction to software engineering, process models & methodologies
· Agile development, SCRUM					
· Software project planning & estimation	
· Requirements capture, analysis & modeling
· Software design & architecture				
· Software implementation strategies
· Software configuration management
· Emerging software development trends
· Software testing & validation
· Design and implement software systems by following secure software development life cycle
· Security issues in software engineering

VII. Instructional Methods

· Lecture
· Problem-solving/Discussion
· In-class exercises
· Small group activities
· Project-based learning
[bookmark: _GoBack]VIII. Evaluation of Outcomes

A. Student Assessment
 Homework assignments, Team projects, Midterm exam, Final exam, Rubric

B. Meaningful Writing Assignment
 Short answer essay questions on exams will require students to explain and justify their
 response in writing.

C. A Matrix of Course Student Learning Outcomes vs Methods of Assessment
 If the course is being evaluated for accreditation purposes, approved department
 accreditation assessment tools will additionally be utilized.

	Course Learning Outcomes
	Methods of Assessment

	
	Homework assignments
	Team Project
	Midterm Exam
	Final Exam
	Rubric

	Know the history and current status of software production and the scope of software engineering practice.
	x
	x
	x
	x
	

	Explain the software lifecycle and models of software process (such as Spiral, TSP, RUP, Scrum, or XP)
	x
	x
	x
	x
	

	Comprehend the models, techniques and software tools for project planning and management (such as IDEs, defect tracking systems, version control systems, or estimation tracking systems)
	x
	x
	x
	x
	

	Learn models for estimating software cost and deadlines (such as function points, story points, COCOMO, or wide-band delphi)
	x
	x
	x
	x
	

	Be aware of the differences among various methodologies for software development
	x
	x
	x
	x
	

	Gain experience in the principles and techniques of effective user interface design
	x
	x
	x
	x
	

	Use the techniques for capturing user requirements and specifying software (such as contextual inquiry, user stories, scenarios, or formal specifications)
	x
	x
	x
	x
	

	Design and architect software systems using design principles (such as cohesion, coupling, abstraction, or information hiding) and design patterns
	x
	x
	
	
	x

	Read and create design diagrams (such as class diagrams, state charts, object diagrams, or dataflow diagrams) by hand and with tool support
	x
	x
	x
	x
	x

	Take a specification or a design diagram of a large system and implement a feature set
	x
	x
	
	
	x

	Appreciate software quality assurance techniques (such as white-box testing, black-box testing, regression, unit tests, program analysis, or inspection)
	x
	x
	
	
	x

	Acquire experience in team-oriented software development
	x
	x
	
	
	x

