California State Polytechnic University, Pomona	
Computer Science Department

Course Title: 			Object-Oriented Design and Programming
Course Number: 		CS 3560
Units:				3 units
CS number:			C-2
Component:			Lecture
Instructional Mode: 		Face-to-Face and web assisted
Grading Basis:			Graded only
Repeated Basis:		May be taken only once
Cross listed Course: 		N/A
Dual-listed Course: 		N/A
Major course/Service course/GE course: Major course
Date Prepared: 		Sept. 11, 2019
Prepared by: 			Yu Sun and Salam Salloum

COURSE DESCRIPTION

I. Catalog Description

CS 3560 Object-Oriented Design and Programming (3)

Elements of the object model. Abstraction, encapsulation, modularity, hierarchy and polymorphism. UML modeling. Object-oriented design principles. Design patterns. Implementation and programming of system design. Code generation. Model integration with database. Introduction to embedded software. Object and portable data. Comprehensive examples using a case study approach.

Pre-requisite(s): CS 2400 with a grade of C or better, or consent of instructor.

II. Expected Outcomes

On successful completion of this course, students will be able to:
· Explain the differences between an object-oriented approach and a procedural approach.
· Formulate and specify user requirements of a software system using use case diagrams and scenarios.
· Use object-oriented design tools such as CRC and UML class diagrams to model problem solutions.
· Use basic object-oriented design patterns to structure solutions to software design problems.
· Implement association relationships and multiplicities.
· Use frameworks, classes, and methods from standard libraries in problem solutions.
· Design and implement software employing the principles of modularity, encapsulation, information hiding, abstraction, and polymorphism.
· Design, implement, and use classes and methods in an object-oriented programming language, employing standard naming conventions and making appropriate use of advanced features such as inheritance, exception handling, I/O, references, and simple GUIs.
· Evaluate existing classes and software for the purposes of extension through inheritance.
· Use and create standard API documents to understand and document the use of classes and methods.
· Design and implement test suites for unit testing.
· Re-factor existing software to improve its design or efficiency.

III. Instructional Materials

Required Text:
Martin, Robert C. Agile software development: principles, patterns, and practices. Prentice Hall, 2002.

Reference:
G. Booch, R. Maksimchuk, M. Engle, B. Young, J. Conallen, and K. Houston, Object-Oriented Analysis and Design with Applications, 3rd Edition, Addison Wesley, 2007.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of Reusable Object-Oriented Software, Addison Wesley, 1995.

IV. Minimum Student Material

Textbook and class handouts

V. Minimum College Facilities

A classroom with a projection system and whiteboard, a computer laboratory

VI. Course Outline

· Motivation
· Classes, relationships, class diagrams
· Programming contracts
· Objects, memory management
· Polymorphism, generics, parameters variance
· Suspended execution lambda expressions / iterators
· Events
· From requirements to class diagram
· Dynamic design and sequence diagrams
· Class refinement, SOLID principles
· Cross cutting concerns and aspect oriented programming
· Design patterns
· Tests

VII. Instructional Methods

· Lecture
· Problem-solving/Discussion
· In-class exercises
· Small group activities
· Project-based learning

VIII. Evaluation of Outcomes
[bookmark: _GoBack]
A. Student Assessment
 Class participation, Programming assignments, Projects, Midterm exam, Final exam.

B. Meaningful Writing Assignment
 Students shall produce written solutions or proofs or programs to problems that are
 assigned as homework and/or programming projects and explain their reasoning.

C. A Matrix of Course Student Learning Outcomes vs Methods of Assessment
 If the course is being evaluated for accreditation purposes, approved department
 accreditation assessment tools will additionally be utilized.

	Course Learning Outcomes
	Methods of Assessment

	
	Class Participation
	Programming assignments
	Projects
	Midterm exam
	Final exam

	Explain the differences between an object-oriented approach and a procedural approach
	x
	x
	x
	x
	x

	Formulate and specify user requirements of a software system using use case diagrams and scenarios
	x
	x
	x
	x
	x

	Use object-oriented design tools such as CRC and UML class diagrams to model problem solutions
	x
	x
	x
	x
	x

	Use basic object-oriented design patterns to structure solutions to software design problems
	x
	x
	x
	x
	x

	Implement association relationships and multiplicities
	x
	x
	x
	x
	x

	Use frameworks, classes, and methods from standard libraries in problem solutions
	x
	x
	x
	x
	x

	Design and implement software employing the principles of modularity, encapsulation, information hiding, abstraction, and polymorphism
	x
	x
	x
	x
	x

	Design, implement, and use classes and methods in an object-oriented programming language, employing standard naming conventions and making appropriate use of advanced features such as inheritance, exception handling, I/O, references, and simple GUIs
	x
	x
	x
	
	x

	Evaluate existing classes and software for the purposes of extension through inheritance
	x
	x
	x
	
	x

	Use and create standard API documents to understand and document the use of classes and methods
	x
	x
	x
	
	x

	Design and implement test suites for unit testing
	x
	x
	x
	
	x

	Re-factor existing software to improve its design or efficiency
	x
	x
	x
	
	x

