

Department of Mathematics and Statistics

Colloquium Series

From Fibonacci numbers to polynomials, integrals, and vector spaces

> Berit Givens Cal Poly Pomona

Abstract: Many people have heard of the famous sequence of Fibonacci numbers, which starts $0, 1, 1, 2, 3, 5, 8, \ldots$ Each term in the sequence is the sum of the two previous terms. In other words, $F_n = F_{n-1} + F_{n-2}$. We can generalize this idea by adding coefficients to the recurrence to consider sequences which satisfy $X_n = aX_{n-1} + bX_{n-2}$. The collection of all sequences satisfying this recurrence is denoted by $\mathcal{R}(a, b)$. Viewed this way, the Fibonacci sequence is simply one element among many in the space $\mathcal{R}(1, 1)$. It turns out that many of the famous facts about Fibonacci numbers are facts which are true of sequences in $\mathcal{R}(a, b)$. Finally, by letting a = x and b = 1, we obtain the Fibonacci polynomials $F_n(x)$. In joint work stemming from the Park City Math Institute in 2017, we investigated a new sequence obtained by integrating $e_n = \int_0^\infty F_n(x)e^{-x}dx$. In this talk, we'll show how one particular Fibonacci fact allows us to investigate the sequence $\{e_n\}$.

Keywords: Fibonacci, combinatorics, sequences

Wed. Oct. 6, 1:05 - 1:50 pm on Zoom

For more info visit the department website for the colloquium

CAL POLY POMONA