John Mallinckrodt
Cal Poly Pomona
mallinckrodt@csupomona.edu
http://www.sci.csupomona.edu/~mallinckrodt/
Background

- Primarily engineering majors in calculus-based physics sections (~500/year)
- Quarter system with first (of four quarters) devoted to kinematics, mechanics (minus oscillation), and fluids
- Engineering faculty dissatisfied with level of instruction in statics

and, of course,

- Physics faculty dissatisfied with performance in general

DISCLAIMER

- The following represents immature and evolving thoughts
Observations

• *Instruction in kinematics (often or always) involves:*
 > no physical principles
 > a large set of complicated looking equations
 > explicit teaching of bad problem solving habits
 > time-dependent quantities requiring careful mental distinction and notation
 > problematic evaluations of starting and ending “states”—e.g., “just after release” and “just before hitting the ground”
 > a background of confusion about the velocity/acceleration distinction

• *Instruction in statics involves:*
 > a simply-stated physical principle
 > no time dependence
 > the concept of a system
 > free body diagrams / identification of forces
 > straightforward vector math
Overview of Approach (first lessons)

- look at nature as a collection of interacting “systems”
- notice the overwhelming prevalence of “equilibrium”
- recognize equilibrium as the natural result of “dissipation” and self-regulating contact “forces”
- model the contact forces by the behavior of springs of varying stiffness (à la Clement)
- obtain a restricted case of Newton’s Third law
- define force (“arbitrarily”) in terms of a calibrated spring
Overview of Approach (first lessons) [cont'd]

• examine equilibrium situations and hypothesize
 \[\vec{F}_{\text{net}} = \Sigma \vec{F}_{\text{on system}} = 0 \] [vectors]

• identify and examine the contactless gravitational force

• introduce and define “gravitational mass” (arbitrarily in terms of relative weights) and “field” (in N/kg) to account for observations

• motivate and develop second condition
 \[\vec{\tau}_{\text{net}} = 0 \] [cross product]
Things to note (things I like!)

- Physics on day one, not week three or four
- A simple principle, not a set of complicated equations
 (stresses “how to apply the principle” rather than “how to find the right equation”)
- Early introduction to concepts of restoring force, oscillation, and dissipation which will be returned to later
- Vectors introduced in a non-displacement context
 (vector properties based on usefulness for describing observations rather than apparent physical necessity)
- “Gravitational field”, not “acceleration due to gravity”
- No time dependence; no early confusion re: velocity vs. acceleration and the dynamical effects of forces
- Early introduction to the physicist’s world view
 —i.e., “interacting systems”
Overview of Approach (later lessons)

Relative velocity

• note that all of the above takes place on a moving platform and infer that simple motion is unremarkable (Newton’s First law)

• more vectors: \(\vec{r}_{ba}, \quad \vec{v}_{ba} \equiv \frac{d\vec{r}_{ba}}{dt}, \quad \vec{v}_{ca} = \vec{v}_{cb} + \vec{v}_{ba} \)
Overview of Approach (later lessons) [cont'd]

Momentum

- observe that \(\vec{F}_{\text{net}} \neq 0 \) causes change in “motion” and establish
 \[
 \Delta \vec{v} \propto \frac{\vec{F}_{\text{net}} \Delta t}{m}
 \]
 [w/ minor digression on “equivalence”]

- remove arbitrariness from definition of the Newton

- manipulate the above to obtain \(\Delta \vec{p} = \vec{J} \) and
 \[
 \frac{d\vec{v}}{dt} = \frac{\vec{F}_{\text{net}}}{m}
 \]
 (Newton’s Second law)

- extend to multiparticle systems; observe conservation of momentum; infer Newton’s Third law
Overview of Approach (later lessons) [cont'd]

Angular momentum

- Minimal treatment intended primarily to complement the conservation of linear momentum

Energy

- Motivate $\vec{F}_{\text{net}} \cdot \Delta \vec{r}$ as another measure of “effect” [dot product]
- Work-Energy, conservation of energy
Overview of Approach (later lessons) [cont'd]

Finally!!! Time “dependence”—\(\vec{r}(t) \) and \(\vec{v}(t) \)

Uniform gravity/Constant force

- \(\frac{d\vec{v}}{dt} = \frac{\vec{F}_{\text{net}}}{m} = \vec{g} \) (or at least constant) \[“acceleration”\]
- constant acceleration kinematics

Circular motion

Newtonian gravity and orbital motion

Oscillation
What gets left out

- rotational kinematics and rolling
- rotational dynamics (except for angular momentum and rotational kinetic energy)
- fluids (probably simply pushed to the next quarter)

What gets less emphasis

- friction
- Newton’s laws
- constant acceleration kinematics and dynamics
- center of mass and rotational inertia

What gets more emphasis

- static equilibrium
- conservation laws
- non-constant acceleration dynamics
- gravitational field
- oscillation
Reservations

- Approach is a little retro in some areas, especially beginning
- Is the concept of force too abstract to be made so central?
- Deemphasis of differential calculus skills that might be motivated and developed in early kinematics instruction
- Is it OK to deal with changes in velocity without worrying about changing velocity?
- Is it OK to eliminate rotational kinematics, rolling, $\vec{\tau}_{\text{net}} = l\vec{\alpha}$

and, of course,

- Will anybody else find the approach useful?
- Feedback?