# CALIFORNIA STATE POLYTECHNIC UNIVERSITY, POMONA

## **ETE 204**

## COURSE OUTLINE

| Course Information                                 | ABET Unit Classification (4 Quarter Units) |  |  |  |  |
|----------------------------------------------------|--------------------------------------------|--|--|--|--|
| Department: Engineering Technology                 | Math:                                      |  |  |  |  |
| Course Number: ETE 204/204L                        | Basic Science:                             |  |  |  |  |
| Course Title: Semiconductor Devices & Circuits/Lab | Engineering Topics: 4                      |  |  |  |  |
| Revision Date: 12/14/04                            | Contains significant design content: Yes   |  |  |  |  |
| Revised by: Lyle McCurdy                           | Other:                                     |  |  |  |  |
| Compliant: Catalog 2004/05                         | Curriculum Designation: Required           |  |  |  |  |

# **Catalog Description**

## ETE 204/L Semiconductor Devices and Circuits/Laboratory (3/1)

Characteristics and applications of solid-state diodes. Characteristics and biasing of BJT devices in CB, CE, CC amplifier configurations - load lines, input/output impedance and mid-band gain calculations. Characteristics and biasing of JFET devices and amplifiers, including load lines, input/output impedances and mid-band gain calculation. 3 lectures/problem-solving and 1 three-hour laboratory. Prerequisite: ETE 103.

#### II. **Prerequisites and Corequisites**

Students are expected to have a working knowledge of DC and AC circuits when entering this course.

## III. Textbook and/or other Required Material

TF Bogart, JS Beasley and G Rico, Electronic Devices and Circuits, Prentice Hall, 6th edition. John Keown, OrCAD PSpice and Circuit Analysis, Prentice Hall, Fourth Edition, or equivalent.

## IV. **Course Objectives**

Upon successful completion of this course, each student should be able to:

- 1. Describe ideal and non-ideal (practical) PN and PNP/NPN junction operation including simplified models of voltage and current effects, rectification, and zener mode.
- 2. Use graphical and analytical techniques to analyze/design bias circuits for BJT and JFET amplifiers using fixed and h-bias with single and dual power supplies as applicable, while considering the effects upon the DC load line, O point, and AC load line.
- 3. Analyze/design BJT and JFET amplifiers in CB/CG, CE/CS, and CC/CD configurations using appropriate smallsignal/hybrid-pi models to determine input/output impedance, mid-band gain, and maximum signal swing as set by the AC load line.
- 4. Utilize PSpice in lecture and lab to simulate the above-mentioned circuits to evaluate proper circuit performance.
- 5. Work effectively in team settings in lab to connect, test, compare, and document the theoretical, experimental, and simulation results of representative circuits into formal reports that meet professional writing standards.

# **Expanded Course Description**

## (1 week) 1. Introduction to semiconductor theory

The PN junction; voltage and current characteristics in junctions; forward and reverse impedances.

# 2. Characteristics of semiconductor diodes

(1 week)

More about PN and PNP/NPN junctions, current flow; ideal and non-ideal (practical) characteristics; zener mode.

# 3. Biasing BJT devices

(2 weeks)

fixed and h-bias with single and dual power supplies; DC load lines, Q-point, and AC load lines.

# 4. Characteristics of BJT devices in linear region at mid-band

(3 weeks)

Small-signal and hybrid-pi models; input/output impedance and gain calculations of CB, CE, and CC amplifier configurations; the AC load line and maximum signal output swing.

Page 1 of 3 **ETE 204** 

# 5. Characteristics and biasing of JFET devices

(3 weeks)

Characteristics and biasing of JFET and MOSFET devices; small-signal model; current flow and gain; fixed, self and h-bias; the DC load line and the Q-point in single-stage CS, CG, and CD amplifier configurations, mid-band input/output impedance and gain calculations; the AC load line.

## VI. Class/Laboratory Schedule

Lecture: Two 75 minute sessions per week. Lab: One 3 hour session per week.

### VII. **Contribution of Course to Professional Component**

Lecture: Characteristics of semiconductor devices including diodes, BJTs, and JFETs. Biasing and dc and ac loadlines are presented in each of the three configurations -- CB/CG, CE/CS, and CC/CD, followed by analysis and design of amplifier circuits at midband with emphasis on input/output impedance and gain.

A wide range of measurement techniques are used in lab exercises. Students learn to design/analyze diode and transistor circuits, simulate test results with PSpice, set-up test apparatus, gather data and to prepare technical reports.

### VIII. **Evaluation of Students**

Lab:

Student outcomes will typically be evaluated using the following methods: homework assignment submittals, written in-class midterm and final examinations, one-on-one discussions during office hours, laboratory experiments and laboratory reports. Student grades will typically be based upon the following: quizzes, homework, midterm exam and final exam.

## IX. **Relationship of Course to Program Outcomes**

|             |                                    | Program Outcomes                      |                               |                              |                            |                            |                   |                               |                                            |                                          |                                                 |
|-------------|------------------------------------|---------------------------------------|-------------------------------|------------------------------|----------------------------|----------------------------|-------------------|-------------------------------|--------------------------------------------|------------------------------------------|-------------------------------------------------|
| Crse<br>Obj | (a) Use of modern tools of discipl | (b) Use of math, science, Engg & Tech | (c)<br>Do<br>experi<br>-ments | (d) Dsn of sys & compo nents | (e)<br>Work<br>on<br>teams | (f)<br>Do<br>Tech<br>probs | (g)<br>Eff<br>Com | (h)<br>Life-<br>long<br>learn | (i)<br>Prof,<br>ethics,<br>social<br>resps | (j)<br>Prof, soc,<br>globl,<br>diversity | (k)<br>Qual,<br>Cont<br>impr,<br>timeli<br>ness |
| 1           |                                    | X                                     |                               | X                            |                            | X                          |                   |                               |                                            |                                          |                                                 |
| 2           |                                    | X                                     |                               | X                            |                            | X                          |                   |                               |                                            |                                          |                                                 |
| 3           |                                    | X                                     |                               | X                            |                            | X                          |                   |                               |                                            |                                          |                                                 |
| 4           | X                                  |                                       | X                             |                              |                            | X                          |                   |                               |                                            |                                          |                                                 |
| 5           | X                                  | X                                     | X                             | X                            |                            | X                          |                   |                               |                                            |                                          |                                                 |
| 6           | X                                  |                                       |                               |                              | X                          |                            | X                 |                               |                                            |                                          |                                                 |

Page 2 of 3 ETE 204

- X. Typical Laboratory Experiments. Here, the students are expected work with single stage BJT and JFET amplifiers in the mid-band frequency range in practical laboratory applications. Circuit simulations using Pspice is required. The following labs are oriented to achieve this purpose:
  - Lab 1. Assemble, test and analyze characteristics of typical solid-state diodes, including zener mode. Pspice simulation and formal laboratory report required.
  - Lab 2. Assemble, test, and analyze a mid-band BJT CB amplifier with fixed two-supply bias; DC load line and Qpoint, input/output impedance, gain, and maximum output voltage swing as set by the AC load line. Pspice simulation and formal laboratory report required.
  - Lab 3. Assemble, test, and analyze a mid-band BJT CE amplifier with h-bias; DC load line and Q-point, input/output impedance, gain, and maximum output voltage swing as set by the AC load line. Pspice simulation and formal laboratory report required.
  - Lab 4. Assemble, test, and analyze a mid-band BJT CC amplifier with h-bias; DC load line and Q-point, input/output impedance, voltage gain and current gain. Pspice simulation and formal laboratory report required.
  - Lab 5. Assemble, test, and analyze a mid-band FET CS amplifier with self-bias; DC load line and Q-point, input/output impedance and gain, AC load line effects. Pspice simulation and formal laboratory report required.

Page 3 of 3 ETE 204