CALIFORNIA STATE POLYTECHNIC UNIVERSITY, POMONA

ETE 230

COURSE OUTLINE

Course Information	ABET Unit Classification (4 Quarter Units)				
Department: Engineering Technology	Math:				
Course Number: ETE 230/230L	Basic Science:				
Course Title: Introduction to Digital Logic/Lab	Engineering Topics: 4				
Revision Date: 3/20/05	Contains significant design content: Yes				
Revised by: Massoud Moussavi	Other:				
Compliant: Catalog 2004/05	Curriculum Designation: Required				

I. Catalog Description

Introduction to Digital Logic ETE 230/ETE 230L (3/1)

Study of numbering systems and their conversions; Theory and practice of fundamental and universal gates and their SOP and POS interconnections and their conversion; Simplification theories; Theory, design, and applications of MSI and LSI logic devices including adders, comparator, multiplexers; Introduction to the programmable logic devices (PLDs).;Practice, design, and simulate digital logic network using B2SPICE, PSPICE and Altera software. 3 lectures/problem solving and 1 three-hour laboratory. Prerequisite: ETE 103.

II. Prerequisites and Corequisites

ETE 103 and MAT 105 are co-requisites.

III. Textbook and/or other Required Material

Morris Mano, Digital Design, Third Edition, Prentice Hall Publication Co.

IV. Course Objectives

Upon successful completion of this course, each student should be able to:

- 1. Describe numbering systems and their conversions.
- 2. Explain the combinational SOP and POS logic circuits and their applications.
- 3. Use any simplification method such as K-Map to minimize the output Boolean expression.
- 4. Implement logic circuits to perform arithmetic and logic operations of binary, hexadecimal, and BCD, code and code conversion.
- 5. Explain and analyze the functions and applications of logic devices such as Adders, Comparators, Encoders, Decoders, Multiplexers, and Demultiplexers.
- 6. Explain and analyze the functions and applications of PLDs.
- 7. Design, test, and simulation of variety combinational logic networks using B2Logic, PSPICE, and Altera's MAX + Plus II software.

V. Expanded Course Description

A. Expanded Description of the Course

1. Numbering systems

Introduction to numbering systems such as: Binary, Octal, Hexadecimal, and BCD and their conversions. (1 week)

2. Logic gates

Characteristics and applications of logic gates: Inverter, AND, OR, NAND, NOR, XOR, and XNOR. (1 week)

3. Combinational logic networks

Characteristics and applications of combinational logic circuits: SOP and POS and their conversion. (1 week)

4. Boolean algebra and simplification methods

Simplification methods of Boolean expression such Boolean algebra and K-map for 3to-5 input logic networks. (2 weeks)

5. Arithmetic and Logic operations

Study of arithmetic and logic operation of: Binary, Hexadecimal, and BCD numbers and their logic devices and networks, code and code conversions. (2 weeks)

6. Logic devices

Characteristics of logic devices such as: Adders, Comparators, Parity generator & checker, Encoders, Decoders, Multiplexers, and De-Multiplexers and their applications. (2 weeks)

7. Programmable Logic Devices (PLDs)

Introduction to Programmable Logic Devices Such as: ROM, PAL, PLA, and GAL. (1 week)

B. Typical Laboratory Experiments

- Lab 1. Design, analyze, test, and simulation of a Sum-Of-Product logic network.
- Lab 2. Design, analyze, test, and simulation of a Product-Of-Sum logic network.
- Lab 3. Design, analyze, test, and simulation of a 4-input logic network using K-map.
- Lab 4. Design, analyze, test, and simulation of an arithmetic logic network using Adder/Subtractor
- Lab 5. Design, analyze, test, and simulation a parity generator and Parity checker.
- Lab 6. Design, analyze, test, and simulation of a logic network to perform code conversion from "8421" code to a Gray-code and/or Ex-3 code and visa-versa.
- Lab 7. Design, analyze, test, and simulation of a logic network using Encoder and/or Decoder.
- Lab 8-9. Final laboratory project; Design, analyze, test, and simulation of a combinational logic circuit using MUX, and/or De-MUX, or PLD.

VI. Class/Laboratory Schedule

Lecture: Two 75 minute sessions per week. Lab: One 3 hour session per week.

VII. Contribution of Course to Professional Component

Lecture: Students learn about analyze and design combinational logic devices and networks including Small-Scale and Medium-Scale Integrated Circuits and their applications.

Lab: Students learn how to design, build, simulate, test, and troubleshoot the variety of combinational logic networks in both hardware and software laboratories. They also learn how to write a technical report based on collected data. A wide range of measurement techniques is used in lab exercises including B2Spice, PSPICE, and Altera's MAX +Plus II software tools.

VIII. Evaluation of Students

The instructor evaluates outcomes using the following methods: homework assignment submittals, midterm and final exams, one-on-one discussions during office hours, laboratory experiments, and laboratory reports.

The student grades are typically based on the following factors: quizzes, homework, midterm exam and final Exam.

1		Program Autoomes									
Crs e Obj	<i>(a)</i> Use of moder n tools of discipl	(b) Use of math, science , Engg & Tech	<i>(c)</i> Do experi - ments	(d) Dsn of sys & comp onent s	(e) Wor k on team s	(f) Do Tech prob s	(g) Eff Com	<i>(h)</i> Life- long learn	<i>(i)</i> Prof, ethics, social resps	(j) Prof, soc, globl, diversit y	(k) Qual , Cont impr , timel iness
1		Х				Х					
2				Х		Х					
3				Х		Х					
4		Х		Х		Х					
5		X		X		X					
6	X			X		Х					
7	Х		Х	Х	Х	Х	Х	Х			

IX. Relationship of Course Objectives to Program Outcomes