Nanoemulsions are colloidal systems of nanometric (d<500 nm) oil droplets dispersed in an aqueous phase. Biopolymers, especially proteins, can be used to stabilize emulsions due to their amphiphilic nature. Growing interest in legume-based proteins due to sustainability, low cost, allergen-free and vegan attributes. Protein-based nanoemulsions coagulate in pH ranges near the isoelectric point (pl) (pH4-6), limiting food and beverage applications. Maillard reaction covalently binds proteins and carbohydrates, which introduces steric hindrance between carbohydrate groups to reduce droplet coagulation.

Objective
The goal of this research is to assess the effectiveness of pea-protein or soy-protein-casein (control) Maillard conjugates (P48 & C24) as emulsifiers, as well as to compare the stability of P4C and C4C emulsions at the pl (pH4.6) at various temperatures and in exposure to different monovalent and divalent salt concentrations.

Results and Discussion

- **Nanoemulsion formation**: More monomodal distribution
- **pH stability**: Diameter increases, but stabilized at pH 5.8
- **Ionic strength (Na+)**: Stable
- **Temperature stability**: Diameter increases for 4°C (Fig. 8-9) unstable
- **Stability Studies**: More monomodal, narrowest peak
- **Maillard conjugation**: Conjugated dextran increases emulsifier hydrophobicity
- **More rapid absorption to droplet surface**: Smaller droplets

Discussion:
Maillard conjugation increases monomodality and decreases size of nanoemulsions. Casein nanoemulsions are significantly more monomodal and narrow than pea protein nanoemulsions.

Materials and Methods

- **Prepare Physical Mixture (P0 & C0)**: Completely dissolved protein was mixed with equal-concentration 40kDa dextran in a 1:1 ratio. The mixture was then freeze dried (physical mixture).
- **Maillard conjugation**: Freeze dried powder was put in a climactic chamber at 60°C, 77.5% RH for total time of 24 (casein) or 48h (pea protein). Protein conjugates were subsequently ground with a mortar and pestle and stored in a desiccator.
- **Emulsion formation**: Selected emulsifier (either MC or physical mixture) was completely dissolved at 2% w/w in 5mM phosphate buffer (pH=7) by sonication treatment (intensity 4/10) for 10 minutes. The protein solution was mixed with medium-chain-triglyceride (MCT) oil so that the ratio of oil:water to oil was 1:3. Coarse emulsions were subjected to high pressure homogenization at 30,000 psi for 5 passes.

Stability Studies

- **pH**: An aliquot of each emulsion was adjusted to the isoelectric point (pl) (pH=4.6) using HCl. The particle size distribution was again measured.
- **Temperature**: Nanoemulsions were incubated for 1 month at 4-55°C. Particle sizes were measured weeks 1,2,4.
- **Ionic Strength**: Nanoemulsions were diluted with salt concentrations to final concentrations CaCl2 (0-100mM) or NaCl (0-500mM). Particle size was determined after 1 week.

Conclusions

- Casein overall superior emulsifier than pea protein
- Maillard conjugation stabilizes pea protein-based nanoemulsions at isoelectric point
- MC of pea protein can withstand sodium and calcium concentrations
- Pea protein MC nanoemulsions stable at pH 4.6 at 4-25°C for up to 1 month
- MC improves nanoemulsion stability at high temperatures (>37°C)
- Pea protein MC can be used as emulsifiers in the food and beverage industry

References