
Python Subroutines to Format Spacecraft Telemetry

Nina Rastogi
Electrical Engineering

Mentor: Professor Tim Rogstad

Kellogg Honors College Capstone Project

When transferring data to and from spacecraft, there can be loss

and alteration in the data due to noisy transmission channels.

Some of these include radiation effects in space-based buffers,

on-board protocol conversion anomalies, flight computer

processing load issues, noise in space-ground transmissions, and

file transfer protocol anomalies.[1] By implementing the

BlackJack Data Link Protocol into a python byte-oriented state

machine program called ReadStuff, the data loss and altercation

can be mitigated and maintain the integrity of the data.

To write a

python program

that formats

spacecraft

telemetry

utilizing the

BlackJack Data

Link Protocol.

The code was written in python version 3.6.0. An integrated

development environment (IDE) called PyCharm was used to write

and test the program.

In addition, different libraries were imported in order to maximize

the efficiency of the program. These libraries include numpy, sys,

binascii hexlify, intertools, and crcmod.

The byte stream state machine was successfully

implemented, listing the raw data into the desired

order of fields. The cyclic redundancy test was

successfully implemented using crc16The SNR plots

were not able to be plotted, due to time constraints.

An implementation of the signal to noise ratio plots

(SNRs) will be conducted.

1. A.H. Farrington BlackJack Data Link

Protocol Interface and Implementation

Description, JPL Document, 20675

(2001): p 1-61.

2. BlackJack Telemetry Dictionary,

California Institute of Technology,

GRACE 327-540 Rev 2.1 (2001): p 1-3.

3. BlackJack Command Dictionary,

California Institute of Technology,

GRACE 327-540 Rev 2.1 (2001): p 1-2.

I would like to acknowledge my JPL mentor

Tim Munson for his guidance, support, and

patience. I would also like to thank my

faculty advisor Tim Rogstad for allowing me

to start this project. In addition, I would like

to gratefully acknowledge support from my

JPL coworkers and Cal Poly Pomona students

Bradley Lunsford, Stephan Esterhuizen, and

Giorgio Savastano.

1. Background 2. Objective 3. Materials & Methods

5. Conclusion

6. Future Work

7. References

4. Results & Discussion

8. Acknowledgements

Figure 1. Complete packet description of the path for the raw data.

The State Machine (Definitions):

The Cyclic Redundancy Check:

In figure 2, the definitions for each of the

states for the state machines were created. This

was all done under the class Packet. The self is

a reference to an object, and it’s very similar to

the concepts of this in a C program.

Figure 2. Defining each of the states.

In figure 1, the format of the raw data file is

shown. The first 11 bytes of the data make up

the open flag to the source address. The CRC

(cyclic redundancy check) consists of

everything from the flag byte to the data

length.

The State Machine (Cycling Through the Paths):

The State Machine (Cycling Through the Paths):

Figure 3 shows the defined Run_Statemachine.

It reads the input raw rile, and outputs a list.

The different states are numbered from 0-9,

ending with the CRC. The state, current (state)

both start at zero. The state machine will read a

byte, and cycle through states until it finds an if

statement that it matches. The open flag is

denoted as x02, and once the state machine

finds a x02 in the file, it will start the packet

processing.

Figure 3. The defined state machine that takes an input raw file and outputs a list.

In figure, there is an interp function, which is taken from the numpy library. This

function performs an interpolation on the unpacked file of the byte and the next

state. Due to the struct.unpack function, which unpacks a string according to the

given format, it was necessary to define it by adding an big endian (‘>h’) to make

it a short.

Figure 4. CRC in the state machine.

Figure 4 shows the implementation of

the cyclic redundancy check. The

“Other” coverts the bytes into integers,

making it compatible with the crc16,

which is found under the crcmod

library. After the crc16 is printed, the

state will go back to state 0.

The cyclic redundancy check is a code

that is used for detecting errors in the

code. The files with clocks of data have a

short check value attached to them. This

check value is based on the remainder

values of a polynomial division of the file

contents. Once this number is retrieved,

the calculation is repeated in the code and

if the check values from the code and file

do not match, there is an error in the code.

The CRC polynomial can be hard coded,

or implemented through the library

crcmod.

Reading the File:

The file fed into the state machine using a sys.argv[]. The sys.argv[] is a list in

Python which has the command-line arguments passed to the script. This makes it

easy for the user to input any file of choice into command line and run the

program. ReadStuff is written so that if there is no file inputted into command

line, it will automatically use the data file used for this project.

