
OpenCV Face Detection
Marc Raymond A. Serrano, Computer Engineering

Mentor: Dr. Meng-Lai Yin
Kellogg Honors College Capstone Project

Abstract:
The purpose of this capstone project is to explore face detection. Face detection is a technology implemented in most camera-related applications which include autofocus, criminal detection in security cameras, and facial filters.
The face detection method studied is the “Haar cascade” which looks at an image with layers of predetermined shapes consisting of edges, lines, and centered shapes. If enough layers are verified then a box will be drawn around it to signify a face. In
this project, the “Haar cascade” method is implemented on a Raspberry Pi which was set up to work with OpenCV 2.4.13, Python, and the Pi Camera.
The parts required to make a face detection device are available for purchase and requires programming knowledge to get the device working. Some applications of face detection include Snapchat filters, security camera criminal detectors, personal
face recognition locks, and much more. However, the more complex the application, the stronger the hardware needed. This project accomplishes the base face detection required to make applications, such as the previously mentioned Snapchat filters
and other face detection applications, which identifies faces and follows them.

Facial Recognition:
• Uses OpenCV Haar Cascade
1. Haar Cascade divides a picture into layers and decides if enough of those layers

constitute a face
2. OpenCV already trained to detect a face
3. Ex. Eyes and eyebrows are darker in pictures so those are classified as a black

rectangle while the area below that is usually lighter which is classified as a
white rectangle.

Video Setup:
• Occurs at the top of the code
1. Calls all necessary libraries to use the Raspberry Pi camera
2. Sets color settings to be in grayscale
3. Sets resolution to 320x240
4. Sets video format to “bgr”
5. Settings 2 through 4 allow for better speed of video stream

Conclusion:
Ultimately, this project was a proof of concept that one can make a face detection device. This type of face detection is already used for practical
applications such as surveillance and personal security. With additions to the code which I made, one can improve it to save one’s face to a computer and
connect it to a motor-controlled lockbox to only open when the person’s face is seen by the Raspberry Pi camera.

Code Used in Project:
Marc Raymond A. Serrano

marc.serrano@ca.rr.com

import the necessary packages

from picamera.array import PiRGBArray

from picamera import PiCamera

import time

import cv2

import numpy

import io

import picamera

allows conversion to numpy array

stream = io.BytesIO()

haar cascade which detects faces

face_cascade = cv2.CascadeClassifier('/usr/share/opencv/haarcascades/haarcascade_frontalface_alt.xml')

initialize the camera and grab a reference to the raw camera capture

camera = PiCamera()

camera.resolution = (320, 240)

camera.color_effects = (128,128) #makes it grayscale in video

camera.framerate = 32

rawCapture = PiRGBArray(camera, size=(320,240))

#allows multiple pictures to be taken and saved without replacing the same picture each time

piccount = 0

allow the camera to warmup

time.sleep(0.1)

capture frames from the camera

for frame in camera.capture_continuous(rawCapture, format="bgr", use_video_port=True):

 # grab the raw NumPy array representing the image, then initialize the timestamp

 # and occupied/unoccupied text

 image = frame.array

 #Convert the picture into a numpy array

 buff = numpy.fromstring(stream.getvalue(), dtype=numpy.uint8)

 # convert to gray scale

 gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)

 # finds faces

 faces = face_cascade.detectMultiScale(gray, 1.1, 5)

 # Draw a rectangle around every found face

 i = 0;

 for (x,y,w,h) in faces:

 i = i + 1;

 cv2.rectangle(image,(x,y),(x+w,y+h),(255,255,0),2)

 #(image, bottom left corner, top right corner, color settings, shift

 cv2.putText(image, "Person" ,(x,y-5),cv2.FONT_HERSHEY_SIMPLEX,0.5,(255,0,0),1,255)

 cv2.putText(image,"Number of People="+str(i),(0,20),cv2.FONT_HERSHEY_SIMPLEX,0.5,(0,255,0),1,255)

 # show the frame

 cv2.imshow("Frame" , image)

 key = cv2.waitKey(1) & 0xFF

 # clear the stream in preparation for the next frame

 rawCapture.truncate(0)

 # if the 'p' key was pressed, take a picture of the current screen

 # and save in current directory (/home/pi in my case)

 if key == ord("p"):

 piccount = piccount + 1

 cv2.imwrite('picture' + str(piccount) + '.jpg' ,image)

 # if the `q` key was pressed, break from the loop

 if key == ord("q"):

 break

