
Particle Swarm Optimization for Engineering

Applications using Python and PYSWARM
Nathan Brakband, Mechanical Engineering

Mentor: Dr. Todd D. Coburn

Kellogg Honors College Capstone Project

References

1. Giordano Tomassetti and Leticia Cagnina, “Particle Swarm Algorithms to Solve Engineering Problems: A Comparison of Performance,” Journal of Engineering, vol. 2013, Article ID 435104, 13 pages, 2013. doi:10.1155/2013/435104

2. Lee, Abraham. "Particle Swarm Optimization (PSO) with Constraint Support." PYSWARM. 27 Feb. 2014. Web. 2 Mar. 2015. <http://pythonhosted.org/pyswarm/>.

3. Brownlee, Jason. "Particle Swarm Optimization." Clever Algorithms: Nature-Inspired Programming Recipes. 1 Jan. 2014. Web. 2 Mar. 2015. <http://www.cleveralgorithms.com/nature-inspired/swarm/pso.html>.

4. McCaffrey, James. "Particle Swarm Optimization." MSDN Magazine. Microsoft, 1 Aug. 2011. Web. 2 Mar. 2015. <https://msdn. microsoft.com/en-us/magazine/hh335067.aspx>.

5. L.C. Cagnina, S.C. Esquivel, “Solving engineering optimization problems with the simple constrained particle swarm optimizer”, Informatica 32 (3) (2008)319–326.

Abstract: Particle Swarm Optimization (PSO) has been developed as a method for solving optimization problems where mathematical methods are difficult and direct

numerical methods are computationally intensive. PSO mimics the behavior of animal swarms in nature by searching a function randomly and utilizing comparison and

movement of “particles” to find an optimum or minimum point. This allows a solution to be found in fewer computations while accommodating various problems and

constraints. In particular, this method and its benefits are of interest to the field of engineering for optimization of design. The difficulty lies in making it accessible to those of

varying levels of programming competence and those who may not have access to mathematical software packages. Python has been chosen as a language which is simple in

syntax and freely available. Using PYSWARM [2] as a foundation, several modifications were made to create a PSO function that can receive entry of any problem. These

modifications are highlighted and the results of several test cases are shown.

What is PSO?

• Method of solving minimization/optimization problems by

mimicking the behavior of swarms in nature [3]

• Randomly initializes swarm of “particles” with “velocities”

that are test solutions to the problem

• Evaluates which particles are best and modifies velocity

towards them [1] (See Fig. 3)

• Evaluates constraints to ensure solution is feasible

Python and PYSWARM Modifications

• Python is a language with relatively simple syntax.

• PYSWARM[2] is a free PSO module that included basic

functionality, but failed to handle narrow solution spaces.

• Feasibility function was created to evaluate the magnitude of

constraint violation.

• New logic was applied (Figure 8.)

Problem Entry

• Define function f(x) to be minimized (cost, weight, etc.)

• Define side constraints, g(x) ≥ c
• Define variable ranges, a < x < b

Test Problems

• Problem 1: Trivial Solution, minimize parabola

• Answer: [0, 0]

• Problem 2: Maximize Volume, obtain maximum volume of a

cylinder given a limit on surface area.

• Best Answer: r = 5.00027955 h = 9.99888179

• Problem 3: Speed Reducer Design, minimize weight, E03[1]

• Best Answer: x = [3.5, 0.7, 17, 7.3, 7.8, 3.35021467]

• Problem 4: Spring Design, minimize weight, E04[1]

• Best Answer: x = [0.05, 0.28202298, 2.0]

Conclusion

• For problems 1-3, the function performed as expected,

although with less accuracy.

• For problem 4, a better solution was found than published.

Discrepancies in side constraints could have occurred.

• Accuracy increased with more particles.

If f(xi) < f(xpbest) and dist(xi) ≤ dist(xpbest):
xpbest = xi

 If f(xi) < f(xgbest) and dist(xi) ≤ dist(xgbest):
xgbest = xi

Else If dist(xi) < dist(xpbest):
xpbest = xi

 If f(xi) < f(xgbest) and dist(xi) ≤ dist(xgbest):
xgbest = xi

Import the PYSWARM module
import pso

Function to be minimized
 def f(x):
 # Extract variables from variable array
 x1 = x[0]
 x2 = x[1]
 x3 = x[2]
 # etc...
 return x1+x2+x3... # Insert function here

Side constraint functions
 def g1(x):
 # Extract necessary variables from variable array
 x1 = x[0]
 x3 = x[2]
 return x1/x3 # Insert variable portion of constraint

 def g2(x):
 # Variables
 return # Function
 # etc...

Combine side functions into single constraint
 def con(x):
 # Extract side constraint function values
 cg1 = g1(x)
 cg2 = g2(x)
 cg3 = g3(x)
 # etc...
 # Subtract constant (usually normalized to 1)
 return [cg1-1.0, cg2-1.0, cg3-1.0, ...]

 # Output array

Variable ranges
 lb = [a, c, e…] # Lower Bound
 ub = [b, d, f…] # Upper Bound

Use PSO function
xopt is the best position
fopt is value at xopt
xopt, fopt = pso.pso(f, lb, ub, f_ieqcons=con)

Table 1: Summary of Results

 # of Particles/

Max Iterations Best Worst Mean St. Dev

Problem 2
Modified

PYSWARM

20 / 1000 -785.398128 -783.5826 -785.1333 0.3535

40 / 500 -785.398156 -784.9837 -785.3376 0.0864

Problem 3

MCEPSO[1]
10 / 3000 2996.348166 2996.3560 2996.3495 0.0027

20 / 1500 2996.348165 2996.3482 2996.3482 0.0000

SiCPSO[1]
10 / 3000 2996.348165 2996.3481 2996.3481 0.0000

20 / 1500 2996.348165 2996.3481 2996.3481 0.0000

Modified

PYSWARM

20 / 1000 2996.348173 3222.2627 3064.6861 65.3745

40 / 500 2996.348170 3165.9279 3025.9751 29.0723

Problem 4

MCEPSO[1]
10 / 3000 0.012665 0.0156 0.0134 0.0007

20 / 1500 0.012666 0.0146 0.0132 0.0005

SiCPSO[1]
10 / 3000 0.012665 0.0170 0.0136 0.0010

20 / 1500 0.012665 0.0146 0.0133 0.0005

Modified

PYSWARM

20 / 1000 0.002820 0.0030 0.0029 0.0001

40 / 500 0.002820 0.0030 0.0028 0.0001

*PYSWARM runs were performed with w=0.5 and c1=c2=1.8

Figure 2. Problem 1 particle positions Figure 3. Problem 1 particle trajectory and PSO equations

Figure 4. Problem entry template

Figure 1. Problem 1 parabola [4]

Figure 5. P2 Cylinder [Wikipedia] Figure 7. P3 Speed Reducer [5]

Figure 6. P4 Spring [5] Figure 8. Logic for selecting best particles

