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Abstract The language of entropy is examined for consistency with its mathematics
and physics, and for its efficacy as a guide to what entropy means. Do common de-
scriptors such as disorder, missing information, and multiplicity help or hinder under-
standing? Can the language of entropy be helpful in cases where entropy is not well
defined? We argue in favor of the descriptor spreading, which entails space, time,
and energy in a fundamental way. This includes spreading of energy spatially during
processes and temporal spreading over accessible microstates states in thermody-
namic equilibrium. Various examples illustrate the value of the spreading metaphor.
To provide further support for this metaphor’s utility, it is shown how a set of reason-
able spreading properties can be used to derive the entropy function. A main conclu-
sion is that it is appropriate to view entropy’s symbol S as shorthand for spreading.

1 Introduction

Thermodynamics and statistical mechanics were developed to describe macroscopic
matter. They differ from mechanics, which describes point particles and rigid bodies,
in that they account for internal energy storage modes. Accordingly, a key function
of thermodynamics is internal energy, namely, the average total energy of a system,
including all storage modes. An equally important, but less easily digested, function
is entropy. Perhaps because it can be defined in diverse ways, and its behavior in
thermodynamic systems can be subtle, entropy’s meaning and usefulness have come
into question [1]. A commonly used, but inadequate, language surrounding entropy
contributes to this. Despite its intimate connection with energy, entropy has been de-
scribed as a measure of disorder, multiplicity, missing information, freedom, mixed-
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up-ness, and the like—none of which involves energy explicitly.1 The purpose of the
present article is to discuss how entropy can be related to energy in a qualitative, inter-
pretive way, offering the possibility of an improved understanding and appreciation
of entropy’s generality and value.

1.1 The Disorder Metaphor

The most common metaphor for entropy relates it to disorder. Usage goes back at
least to Boltzmann [2], who wrote, “. . . one must assume that an enormously compli-
cated mechanical system represents a good picture of the world, and that all or at least
most of the parts of it surrounding us are initially in a very ordered—therefore very
improbable—state . . . whenever two or more small parts of it come into interaction
with each other, the system formed by these parts is also initially in an ordered state,
and when left to itself it rapidly proceeds to the disordered most probable state.”

Unfortunately, the term disorder is deficient. First and foremost, there is no general
definition of it in the context of thermodynamics. Dictionary definitions typically
are: Lack of order or regular arrangement; confusion; (in medicine) a disturbance
of normal functioning. “Lack of regular arrangement” has a spatial connotation, and
one can indeed conceive of spatial disorder; i.e., where the positions of particles
lack regularity; and spin disorder, which refers to the degree of non-regularity of up-
down spin orientations. The term confusion can be related to the disorder that some
associate with higher temperatures, often envisaged in terms of increased thermal
agitation. The definition of disorder seems to be variable, depending on the situation,
which makes the term vague and confusing. Burgers [3] observed that disorder “leads
to anthropomorphic forms of reasoning which are often misleading.” Yet physicists
still tend to gravitate toward use of the disorder metaphor.

Another difficulty is that one can be misled by focusing attention on one obvious
type of disorder to the exclusion of important others. For example, this is tempting
in the discussion of spontaneous crystal formation in an isolated, metastable super-
saturated solution. Here a dissolved solid’s concentration exceeds its maximum equi-
librium value and a slight perturbation can trigger crystal formation. From a spatial
viewpoint, there is more order after crystallization, yet the system’s entropy (includ-
ing liquid, solid crystals, and container walls) must increase. The tempting misleading
interpretation that entropy decreases, based on increased spatial order is exacerbated
by the fact that it is possible that temperature has also decreased. To be sure, the
physical phenomena here are not transparent, but the ease of misinterpretation using
the disorder metaphor is noteworthy.

The behavior of some binary liquid crystals clearly illustrate weaknesses with the
disorder metaphor [4]. At one temperature, such a system can be in a nematic phase,
where the rod-like molecules tend to align, but positions show no particular spatial or-
der. For lower temperatures, the system can enter the smectic phase, where molecules
lie in well defined planes, establishing a spatial layering. The increased spatial order

1Some entail energy implicitly. For example, multiplicity refers to the number of accessible energy states
consistent with specified conditions.
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(decreased disorder) does indeed accompany reduced entropy. However, as temper-
ature is lowered further, the system re-enters a nematic phase with increased spatial
disorder, but lower entropy. This shows again that the disorder metaphor can easily
mislead. Generally, an undue focus on configurational entropy (including that associ-
ated with the regularity of positions or alignment of rodlike or polarized molecules),
without giving proper attention to entropy contributions from linear and angular mo-
mentum effects, is a dangerous practice.

Karl Darrow [5] examined examples for which entropy could be associated with
disorder, and observed that disorder is not always useful, as indicated by a free ex-
pansion of a gas in a constant-temperature environment. Entropy increases, but one
cannot unambiguously associate more disorder with the final state. He wrote, “Would
anyone spontaneously say that a gas in a two-liter bottle is more disorderly than the
same gas at the same temperature in a one-liter bottle?” In another discussion of
the free expansion, Bohren and Aldrich [6] write that increased volume only means
increased disorder if “we define this to be so. But if we do, we have defeated our pur-
pose of supposedly explaining entropy as disorder. That is, we have defined disorder
by means of entropy, not the other way around.”

Despite Darrow’s displeasure with some aspects of the disorder metaphor, he used
it subsequently in its variable-definition form and applied it to the zero-temperature
limit: “Zero entropy corresponds to perfect order . . . if two or more types of disorder
coexist each makes to the total entropy a contribution of its own, which vanishes when
it vanishes.” This implies that as entropy approaches zero, all possible forms of disor-
der disappear. Although this circumvents defining disorder for the zero-temperature
limit, it does not provide much help with finite temperature situations, where defini-
tions of various types of disorder would be needed.

The term disorder has been criticized by a variety of others writers, including Din-
gle [7], who described the view that entropy is disorder as “a most inessential visual-
ization which has probably done much more harm than good.” Wright [8] examined
various examples of real phenomena and concluded, “. . . there is no clear correlation
between propositions about entropy and anything intuitively obvious about disorder.”
Lambert [9], critically assessed usage of the disorder metaphor in chemistry text-
books, and has successfully convinced authors of 15 textbooks to remove statements
relating entropy with disorder from new editions of their books.

Upon the death of J. Willard Gibbs, a list of subjects intended for supplementary
chapters to Gibbs’ Equilibrium of Heterogeneous Substances was discovered [10].
One of the topics was “On entropy as mixed-up-ness.” Unfortunately, Gibbs did not
live to bring this to fruition and it is not known just what Gibbs had in mind. Mixed-
up-ness sounds a lot like disorder and Gibbs, who had considerable mathematical
skills, might have been able to solidify its meaning. As it stands, even if one places
value in the disorder metaphor, its current use does not entail specific reference to
energy, the centerpiece of thermodynamics. In this sense, it cannot get to the heart of
the physics.

1.2 Missing Information, Multiplicity, Optiony, Freedom, Unavailability

The metaphor of missing information for entropy is much preferred over disorder.
Edwin T. Jaynes [11], used information theory to develop the full mathematical
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framework of equilibrium statistical mechanics. The missing information metaphor is
well defined and can be quite useful, especially in understanding that descriptions of
macroscopic matter necessarily discard enormous amounts of information about sys-
tem details, working ultimately with a small number of macroscopic variables such as
pressure, volume, and temperature. It does not, however, use space, time, and energy
in a qualitatively useful way, and thus cannot replace the spreading metaphor that is
proposed herein as an interpretive tool.

Related terms are multiplicity [12] or equivalently, optiony [13]. These terms re-
fer to the number of microstates that correspond to a given macrostate. With these
choices, entropy is defined in terms of Boltzmann’s famous S = kB ln(multiplicity) =
kB ln(optiony), where kB is Boltzmann’s constant (the Boltzmann form is discussed
further in Sect. 1.3). The Second Law can then be stated: If an isolated macroscopic
system is permitted to change, it will evolve to the macrostate of largest multiplicity
(or optiony) and will remain in that macrostate.

The metaphor freedom was proposed by Styer [4], who wrote, “. . . the advantage
of the ‘entropy as freedom’ analogy is that it focuses attention on the variety of mi-
crostates corresponding to a macrostate whereas the ‘entropy as disorder’ analogy
invites focus on a single microstate.” Styer also warns of deficiencies in the term
freedom, and suggests that one use both freedom and disorder together to better see
the meaning of entropy. The freedom metaphor was proposed independently by Bris-
saud [14]. Freedom can be related to multiplicity, optiony and missing information,
and has some attractive features.

Finally, there exists a common metaphor that entropy is a measure of the unavail-
ability of energy that can be converted to work in some processes. Because the energy
alluded to is macroscopic energy in this engineering-oriented definition, it cannot
help us understand why, for example, 2 kg of copper has twice the entropy of 1 kg of
copper.

Although the above terms can all be helpful, they do not convey the notions that
thermodynamic processes entail energy spreading and that thermodynamic equilib-
rium is a dynamic equilibrium at a microscopic level.

1.3 The ‘Spreading’ Metaphor

The metaphor of spreading is based explicitly upon space, time, and energy. Space
is intimately involved because energy tends to spread spatially to the extent possible.
For example when hot and cold objects are put in thermal contact, energy spreads
equitably (discussed in Sect. 3) between them. And when an object is in thermal
equilibrium at constant temperature, its quantum state varies temporally as the sys-
tem’s state point spreads over accessible quantum states that are consistent with the
thermodynamic state. Spatial spreading is a helpful interpretive tool for processes
and equilibrium states, and temporal spreading is particularly useful for interpreting
entropy in a particular thermodynamic state.

Clausius came close to using the concept of spreading even before he published his
path-breaking 1865 paper that introduced entropy. In 1862 he proposed a function that
he called disgregation [15]. Clausius pictured molecules as being in constant motion
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and viewed this heat2 as tending to “loosen the connection between the molecules,
and so to increase their mean distances from one another.” Clausius went further in
his 1865 introduction of entropy, writing

S − So =
∫

dQ

T
=

∫
dH

T
+

∫
dZ. (1)

This represents entropy relative to its value (So) in a reference state as the sum of two
terms. In the first, dH is the change in what Clausius called heat content, which we
now call the average kinetic energy as calculated in the canonical ensemble of classi-
cal statistical mechanics. In the second term, dZ is the change in disgregation, which
we now understand [16] comes from the position integrals of the canonical partition
function in classical statistical mechanics. This is consistent with disgregation being
related to what is referred to herein as spatial spreading.

Denbigh [17] used the spreading idea to describe irreversibility, citing three forms
that display divergence toward the future: (i) a branching towards a greater number of
distinct kinds of entities; (ii) a divergence from each other of particle trajectories, or
of sections of wave fronts; (iii) a spreading over an increased number of states of the
same entities. These statements entail space and time and although they do not refer
specifically to energy, they can easily be interpreted in terms of it. Earlier, Denbigh
wrote [18], “As soon as it is accepted that matter consists of small particles which
are in motion it becomes evident that every large-scale natural process is essentially
a process of mixing, if this term is given a rather wide meaning. In many instances
the spontaneous mixing tendency is simply the intermingling of the constituent par-
ticles, as in inter-diffusion of gases, liquids and solids. . . . Similarly, the irreversible
expansion of a gas may be regarded as a process in which the molecules become more
completely mixed over the available space. . . . In other instances it is not so much a
question of a mixing of the particles in space as of a mixing or sharing of their total
energy.” To this it should be added that when particles move and mix, they carry with
them their translational kinetic and stored (e.g., rotational or vibrational) energies;
i.e., they spread their energies and exchange energy with other particles.

While multiplicity, missing information, and the like entail the number of possible
states, the spreading metaphor entails a picture of dynamic equilibrium in terms of
continual shifts from one microstate to another. The difference can be viewed as use
of a noun (multiplicity, information, . . . ) vs. use of a verb (spreading). The spreading
route envisages an active system, where macroscopically invisible energy exchanges
take place—even in equilibrium—while the alternative noun descriptors picture what
is possible, rather than what happens spatially and temporally. The mathematics is
the same for both, but the interpretations differ significantly.

There seems to be a tendency for some people to link uncertainty with disorder.
For example, after a free expansion, the average volume per particle is larger, and
we are less certain about where a particle is at any instant. In this sense, missing in-
formation has increased. Each molecule carries its translational and internally stored
energies to a larger spatial region, but if the gas temperature is unchanged, or has

2This language is obsolete. The term heat is now reserved for energy transfers induced by temperature
gradients.
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decreased, in what sense has the gas become more disordered? Evidently some relate
their own uncertainties about a particles’ whereabouts with the degree of disorder in
the gas itself. The poorly defined term disorder has anthropomorphic underpinnings
that seem to make it acceptable for some to bend its meaning with its use.

The spreading metaphor is powerful, and offers a physically motivated, transpar-
ent alternative to the metaphors discussed above. Styer [4] observed that the most
important failing of “. . . the analogy of entropy and disorder invites us to think about
a single configuration rather than a class of configurations.” The spreading metaphor
addresses this deficiency by focusing on temporal shifts between configurations. In
1996, the spreading metaphor was used to introduce and motivate the development
of thermodynamics pedagogically [19]. In 2002, Lambert [9, 20] argued in favor of
energy-based language to replace the inadequate metaphor of disorder in chemistry
textbooks. The present paper is intended to extend the discussion of the spreading
metaphor for a wider audience of research scientists.

2 Spreading in Equilibrium Thermodynamic States

2.1 Following Boltzmann’s Lead

Microscopic connections between entropy and spreading can be seen best via the
Boltzmann entropy expression

S = kB lnW(E,V,N), (2)

where kB is Boltzmann’s constant and W(E,V,N) is the number of microstates
that are consistent with total system energy E, volume V , and particle number N .
Classically, W(E,V,N) is an integral over the 6N -dimensional phase space [21],

W(E,V,N) = 1

N !
∫ (

d3q d3p

h3

)N

δ(E − HN), (3)

where HN is the system’s Hamiltonian. The delta function δ(E − HN) restricts
nonzero contributions to the integrals to a 6N − 1 dimensional constant-energy sur-
face. These equations are the basis of the microcanonical ensemble formalism of
statistical mechanics, from which the more widely used canonical, and grand canoni-
cal ensemble formalisms are derived. It is natural to use the fundamentally important
(2) and (3) to introduce the concept of spreading.

The space and momentum integrals run over all possible spatial positions and
momenta for each particle. By varying initial conditions, any point in the phase
space volume W(E,V,N) is accessible.3 The functions W(E,V,N) and S(E,V,N)

therefore increase with E and V , holding the remaining two variables fixed, because
an increase in either of these variables increases the accessible phase space volume.4

3It is implicitly assumed that accessible phase space regions with equal phase space volumes are equally
likely and that equal times are spent in them.
4Changes with N at fixed E and V are more subtle, and we cannot conclude that S(E,V,N) always
increases with N .
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A single system’s phase point traverses the phase space in time as particles move
and exchange energy. This traversal provides a graphic image of a system’s particles
spreading and exchanging energy through space, as time progresses. Energy, space,
and time are all explicitly involved. In this sense, entropy can be thought of as a
spreading function.

In real systems, the total energy is never exactly constant and energy exchanges
with the environment, even if weak, cause continual changes in the system’s mi-
crostate. To address this case, the function W(E,V,N) in (2) can be replaced by
W(E,�E,V,N), the phase space volume of the set of points {q,p} such that

E − 1
2�E < system energy < E + 1

2�E. This is the phase space volume of points
in an energy shell rather than on an energy surface. Here energy exchanges with the
environment cause continual changes in the system’s phase point, in addition to the
constant energy flow envisaged originally.

For a quantum system, W(E,V,N) is the number of quantum states with total
energy E; i.e., the degeneracy of E. In principle, the system can be in any of these
states, or more generally a superposition of them. For an ensemble, if each system’s
state could be measured, one would find many of the possible states. This can be
interpreted as a kind of spreading over the members of the ensemble. For a real system
that interacts with its environment, as in the classical case, the number of states,
W(E,�E,V,N), in the energy interval (E − 1

2�E,E + 1
2�E) can be used. The

interactions induce continual jumps from one quantum state to another, a veritable
‘dance’ over accessible states. This is temporal spreading, and this view provides an
interpretation for a number of familiar properties of entropy.

For example, under given temperature and pressure conditions, the entropy per
particle of monatomic ideal gases tend to increase with atomic mass [19, 22]. This can
be understood because the energy levels of an ideal gas are inversely proportional to
atomic mass and thus are closer together for higher mass atoms. Thus, in any energy
interval �E, there will be more states for gases with higher atomic mass, and more
states over which the dance over accessible states can occur. This increased temporal
spreading over states corresponds to higher entropy.

Another example is a comparison of the entropy per particle S(T ,p,N) of N -
particle monatomic and polyatomic gases at temperature T and pressure p. It is found
that Smono(T ,p,N) ≤ Spoly(T ,p,N). This a consequence of there being more states
in an energy interval �E in the neighborhood of the average system energy because
of the existence of rotations and vibrations in polyatomic molecules. Furthermore,
substances comprised of polyatomic molecules with more atoms/molecule tend to
have higher entropy values [22] for the same basic reason. More degrees of free-
dom lead to more states in a given energy interval. This implies a greater degree of
temporal spreading over microstates and higher entropy.

2.2 Maxwell Momentum Distribution

Spreading can be viewed in various ways, one of which is through the Maxwell
momentum distribution F(p), as illustrated in Fig. 1. Here momenta are separated
into bins, in the spirit of the energy cells used by Boltzmann to enable combina-
toric counting arguments. The momentum distribution is shown rather than the more
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Fig. 1 Probability density of
gas particles as a function of
momentum for three
temperatures

familiar speed distribution because momentum is a more informative variable, con-
taining both speed and mass information—and furthermore, it is the variable used,
along with position, in the phase space. Examination of the curves shows that, as ex-
pected, more higher-momentum bins become significantly occupied as temperature
increases. As gas molecules exchange energy with one another and with container
walls, they shift from bin to bin. This reflects a temporal spreading similar to that
described above in terms of the phase space trajectory for classical systems and for
a dance over discrete energy states for quantum systems. More temporal spreading
over bins at higher temperatures means higher entropy.

2.3 Effects of Interparticle Forces

The existence of interparticle forces can inhibit spreading and lower the value of
W(E,V,N) and thus the corresponding entropy. This effect can be appreciated
by examining a one-dimensional classical harmonic oscillator with energy E =
p2/2m + kx2/2. For fixed energy E, the momentum is bounded by |p| ≤ (2mE)1/2

and the position is bounded by |x| ≤ (2E/k)1/2. The system’s phase space trajectory
is an ellipse and its phase space volume is the ellipse’s circumference. The semi-axes
have lengths (2mE)1/2 and (2E/k)1/2. Although an exact closed form expression for
the circumference does not exist, it is clear that in the limit of zero force constant k,
the circumference approaches infinite length and as k becomes large the circumfer-
ence approaches a minimum for fixed E. Here W(E,V,N) is independent of V , and
N = 1, so the simple argument here along with (2) imply that S is a decreasing func-
tion of k for arbitrarily high and low values. Of course the functions W and S are
of questionable value here, but this example does illustrate how a force can inhibit
spreading.

In classical statistical mechanics, a gas with temperature T , volume V , and par-
ticle number N , has maximum entropy when there are zero interparticle forces; i.e.,
Sideal(T ,V,N) ≥ Snonideal(T ,V,N). To see how this comes about, suppose the sys-
tem has Hamiltonian H = K + Φ , where K and Φ are the kinetic and potential
energies. In the canonical ensemble, the entropy for a system with Hamiltonian H is
SH = kB lnQH + 〈H 〉/T . Here QH = T r[exp(−H/(kBT ))], and for classical sys-
tems, the trace is taken to be the integral operator (h3N !)−1

∫
(d3qd3p)N . For an ideal

gas at the same temperature and volume, the entropy is SK = kB lnQK + 〈K〉/T .
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The Gibbs–Bogoliubov inequality [23], which compares two systems with Hamil-
tonians A and B , is −kBT lnQB ≤ kBT lnQA +Q−1

A T r[(B −A) exp(−A/(kBT ))].
Choosing A ≡ H and B ≡ K , the inequality implies SK −SH ≥ T −1[〈K〉K −〈K〉H ].
In classical statistical mechanics, it is easy to see that 〈K〉K = 〈K〉H , showing that
SK ≥ SH , and thus, as stated above,

Sideal(T ,V,N) ≥ Snonideal(T ,V,N). (4)

Equation (4), derived by Baierlein [24] and generalized by Leff [25], reflects the fact
that position-dependent forces reduce the degree of spatial spreading and the degree
of temporal spreading as particles exchange energy. This occurs in the sense that
correlations exist between the positions of interacting molecules, and these molecules
are not as free to spread their energy as they are in an ideal gas. Equation (4) holds
for charged particles in a magnetic field and for lattices of discrete and continuous
spins [25].

Despite the fact that one can give a plausible argument for (4) to hold in the quan-
tum domain,5 it does not do so in general [26]. A counterexample has been exhibited
for a two-dimensional model of low-density helium monolayers and for ideal quan-
tum gases at sufficiently low temperatures. An interpretation is that this reflects the
existence of effective forces associated with Bose–Einstein and Fermi–Dirac statis-
tics that can offset the effects of electromagnetic intermolecular forces—and thus the
degree of energy spreading. The delicacy of the competition between quantum me-
chanical and electromagnetic forces is evident from the result that (4) is violated in
helium monolayers for low temperatures sufficient for quantum effects to exist, but is
actually satisfied for even lower temperatures.

Additionally, writing E = K + φ, the well known constant-volume heat capacity
relation, kBT 2Cv = 〈(E − 〈E〉)2〉 implies

kBT 2Cv = [〈K2〉 − 〈K〉2] + [〈Φ2〉 − 〈Φ〉2] + 2[〈KΦ〉 − 〈K〉〈Φ〉]. (5)

For position dependent potential energies Φ , in classical statistical mechanics the
last bracket vanishes. The first bracket is kBT 2Cv,ideal, and the middle bracket is
non-negative. Thus we find the pleasing inequality

Cv,nonideal ≥ Cv,ideal. (6)

In essence, the existence of potential energy, in addition to kinetic energy, provides a
second mode for energy storage, increasing the heat capacity. Using (6), constant-
volume integration between specified initial and final temperatures, provides the
constant-volume entropy inequality,

(�Snonideal)v ≥ (�Sideal)v. (7)

5When the ideal gas energy states are highly degenerate, one expects the addition of interparticle forces
to split this degeneracy, and thereby lower the system entropy [24]; i.e., there will be fewer states and
thus less spreading in a given energy interval. Perhaps high enough degeneracy is guaranteed only for
sufficiently high energy states, which dominate only in the classical domain.
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Here is an interpretation of (7) for heating. At higher temperatures, forces become
less effective and spatial spreading in the nonideal gas entropy approaches that for
the ideal gas. Given the initially reduced spatial spreading in the nonideal gas, this
accounts for (7).

2.4 Photon Gas

The photon gas in an otherwise empty container whose walls are at constant tem-
perature T is an interesting system [27]. If the container is a cylinder and one of
the cylinder’s end walls is a movable piston, one can envisage (in principle) starting
out with zero photons, with the piston making contact with the opposite (fixed) end.
If the piston is slowly moved away from the fixed end, photons pour into the con-
tainer from the walls, establishing average photon number N(T ,V ) = rV T 3, with
r = 2.03 × 107 m−3 K−3, at volume V . The photon gas has literally been formed by
movement of the piston, providing space for the photons. The corresponding internal
energy is U(T ,V ) = bV T 4, where b = 7.56 × 10−16 J K−4 m−3. The pressure of the
photon gas at volume V is p = 1

3bT 4 and the work done by the gas in the volume
change from zero to V is W = 1

3bV T 4. The first law of thermodynamics then implies
isothermal heat transfer Q = 4

3bV T 4, and thus the final photon gas entropy is

S(T ,V ) = Q/T = 4

3
bV T 3. (8)

Note that S(T ,V ) ∝ N(T ,V ).

In the process of building the gas, photons and their energies spread throughout
the container, clearly increasing the spatial spreading of energy. Once established, the
dance over accessible states can be understood in terms of the continual absorption
and emission of photons over time. If T is increased, the average number N of pho-
tons increases, which increases the amount of temporal energy spreading associated
with absorption and emission of photons. Additionally, Fig. 2 shows that the entropy
density—namely, the entropy per unit volume, per unit frequency of the photon gas—
changes with temperature in a manner reminiscent of the Maxwell momentum distri-
bution discussed in Sect. 2.2. An increasing number of bins hold significant numbers

Fig. 2 Entropy per unit volume,
per unit frequency of a photon
gas for three temperatures
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of photons at higher temperatures. This implies a greater degree of temporal spread-
ing because of continual absorption and emission of photons and fluctuating numbers
of photons and energy within more bins.

2.5 Thermal Wavelength and Spreading

When (2) is evaluated for a classical ideal gas, and the thermodynamics equation
(∂S/∂E)V = 1/T is invoked, the result obtained in the large N limit is

S(T ,V,N) = NkB [ln(v/λ3) + constant], (9)

with v ≡ V/N , λ = h/(2πmkBT )1/2, the thermal wavelength.
The thermal wavelength can be viewed as the quantum extent of each particle

and λ3 as its quantum volume; i.e., an estimate of the volume of its wave packet. For
v > λ3, v/λ3 is an indicator of the fraction of the container that is “occupied.” Strictly
speaking (9) holds only for v � λ3; i.e., in the classical limit. Equation (9) predicts
that S decreases as T is decreased with v fixed.

Commonly, the effects of temperature change are viewed in terms of momentum,
but (9) suggests a very different view of the situation [19]. Suppose the total spatial
volume V is divided into M = V/λ3 cells, each the size of a wave packet. An atom
can spread its energy to any of the M cells. The particles behave as independent enti-
ties, with negligible quantum interference if M � N ; i.e., λ3 	 v. As T is lowered,
M decreases and the number of accessible cells becomes smaller, reducing the degree
of energy spreading in the sense that it becomes more likely, and eventually, neces-
sary that some cells contain more than one particle. Increasing the temperature leads
to the opposite conclusion, namely, the amount of energy spreading increases. All of
this is consistent with the expected inequality, (∂S(T ,V,N)/∂T )V > 0.

Although (9) and the cell picture above hold for non-interfering particles only—
i.e., for λ3 	 v, the thermal wavelength concept is valid for all temperatures. As T is
lowered and λ increases, it becomes more likely that two or more particles will have
overlapping wave packets; i.e., for M < N , some cells must be occupied by more than
one particle. Let To denote the temperature at which λ3 = v. At this temperature there
are as many wave packet-sized cells as particles. As T is lowered below To, quantum
interference builds, as illustrated symbolically in Fig. 3, and extreme quantum effects
become possible. Such effects are expected for

T < To = h2

2πmkBv2/3
. (10)

Bose–Einstein condensation is an extreme low-temperature behavior that has been
verified experimentally [28]. Einstein’s treatment of the ideal B-E gas shows a phase
transition for any specific volume v at the critical temperature Tc,BE such that λ3

c/v =
2.612 [29]. This condition is consistent with expectations; i.e., Tc < To. Specifically,

Tc,BE = h2

2πmkB(2.612)2/3v2/3
= 0.53To. (11)



Found Phys

Fig. 3 Symbolic representation of particle wave packets for higher temperatures, where λ3 	 v and lower
temperatures, where λ3 ≈ v. The rectangular boundaries represent spatial regions within the fluid (not the
full container volume). The thermal wavelength λ does not become of macroscopic size until T is well
below temperatures that have been reached in any laboratory

The main point here is that the growth of the thermal wavelength at low tempera-
tures restricts spreading, albeit with some quantum subtleties.6,7 The reduced spatial
spreading signals reduced entropy and as T decreases toward absolute zero spatial
spreading and entropy approach zero.

Although λ → ∞ as T → 0, in actual experiments λ does not become of macro-
scopic size until T is lower than temperatures that have been reached in any lab-
oratory. For example, in the neighborhood of helium’s lambda point, 2.7 K, where
extreme quantum behavior is observed, λ3/v ≈ 3 (remarkably close to the condition
for B-E condensation in an ideal gas) and λ ≈ 5 × 10−10 m.

Nothing in our discussion of thermal wavelength restricts it to systems satisfying
B-E statistics, and it should apply equally well to Fermi–Dirac statistics. In particular,
(10) should still hold. For an ideal gas with spin 1/2 particles, which satisfies F-D
statistics, the Fermi temperature is [29]

TF = h2

2πmkBv2/3

(
3π1/2

8

)2/3

= 0.76To. (12)

Thus the Fermi temperature, below which extreme quantum effects occur, does in-
deed lie in the region where such effects are expected, based upon thermal wavelength
considerations—and inspired by the spreading metaphor.

In summary, the view of inhibited spatial spreading as temperature is lowered and
thermal wavelength increases is consistent with known behavior of entropy decreas-
ing toward zero with decreasing temperature.

2.6 Free and Non-Free Expansions

The free expansion, which was alluded to earlier, is conceptually simple, but it illus-
trates profound truths about entropy. In its most basic form, it entails a container with

6One subtlety is that λ3 does not represent a rigid volume; it is only an indicator of the range over which
quantum interference becomes strong.
7S. Chu argued that B-E condensation can be viewed in terms of increased particles wavelength; Amer-
ican Institute of Physics Symposium: Diverse Frontiers of Science, May 3, 2006, Washington, DC. This
provided the impetus for addressing low temperature ideal gases in this section.
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insulating walls and total volume 2V . A partition separates the container into left and
right chambers, each with volume V . There is a gas in the left chamber and the right
chamber is devoid of matter. The insulation is breached briefly while the gas tem-
perature T is measured. The thermometer is removed and the insulation is replaced.
The partition is then removed quickly enough that few collisions with gas molecules
occur during the process; i.e., removal does not disturb the gas measurably and the
internal energy change of the gas is zero: �E = 0. According to the discussion in
Sect. 2, the phase space volume has increased and thus the entropy has increased,
because gas energy has become spread over a larger spatial volume.

If the gas is ideal and is in the classical region of temperature and density, its
temperature does not change. If interparticle forces exist, the temperature can either
decrease or increase, depending on its initial temperature [30]. There exists an inver-
sion temperature TI that is similar to the more well known inversion temperature for
Joule throttling processes. For temperatures above TI , the gas temperature increases
in a free expansion. At temperatures below TI , the gas temperature decreases. Typi-
cally, TI is higher than is encountered under most experimental conditions and free
expansions normally lead to cooling. Helium has TI ≈ 200 K, so for a free expansion
beginning at room temperature, helium’s temperature rises, giving a further contribu-
tion to gas entropy’s increase. The crux of the matter is this: If the gas particles have
sufficiently high kinetic energies, they can get close enough to other particles that
the average force is repulsive. In this case, expansion to a larger volume diminishes
this effect and reduces the average potential energy, which demands a concomitant
average kinetic energy increase to assure that �E = 0.

In terms of spreading, when the average force between molecules is repulsive,
spatial spreading is enhanced and this adds to the effect of the volume increase.
Thus larger entropy changes are expected, consistent with an increased volume plus
a higher temperature. In the more common situation, when the average force between
molecules is attractive, spreading is constrained and this reduces the net amount of
spatial spreading. This is consistent with the effect of increased volume being par-
tially offset by a temperature decrease. Because temperature changes experienced
in free expansions are relatively small, all free expansions lead to a net increase in
spatial spreading and thus entropy.

To close this section, consider an isothermal expansion of a classical fluid, for
which [31, 32],

(�Snonideal)T ≥ (�Sideal)T . (13)

A spreading interpretation is that interparticle forces in the nonideal system constrain
spreading and depress entropy. In an expansion, the average interparticle distance
between gas particles lessens, spreading is less constrained, and ultimately—for large
enough volume—approaches the degree of spreading of an ideal gas. The left side of
(13) exceeds the right side because of the initial depressed degree of spreading at
smaller volume, where interparticle forces are strongest on average.

2.7 Mixing of Gases

Consider two gases, each with N molecules, initially in separate but equal volumes
V separated by a central partition, as shown in Fig. 4(a). The entire system has tem-
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Fig. 4 (a)–(b) Process I:
Mixing of two ideal gases (black
and empty circles) under
classical conditions, each
initially in volume V and finally
sharing volume 2V . (b)–(c)
Process II: Isothermal
compression to volume V

perature T . If the partition is removed, the gases spontaneously mix together, there is
no temperature change, and the entropy change is

�S =
{

2NkB ln 2 for distinguishable gases,

0 for identical gases.
(14)

For distinguishable molecules, process I yields the standard “entropy of mix-
ing”, (15). Despite its name, this entropy change actually comes from the expan-
sion of each species; i.e., �SI = NkB ln 2 + NkB ln 2 = 2NkB ln 2. Process II,
Fig. 4(b), (c), is an isothermal compression of the container in (b), so �SII =
−2NkB ln 2. In the latter process, energy spreading is negative for the gas, with pos-
itive energy spreading occurring in the constant-temperature environment, which re-
ceives energy. Thus

�Stotal = �SI + �SII = 0 for distinguishable particles. (15)

Here is an energy spreading interpretation. For distinguishable gases, energy
spreads from volume V to 2V by each species in process I, accounting for �SI =
2NkB ln 2. Note that upon removal of the partition, the energy spectrum of each
species becomes compressed because of the volume increase and, most important,
spreads through the entire container. That is, energy states of “black” particles exist in
the right side as well as the left, with a corresponding statement for “white” particles.
In process II, each species gets compressed from 2V to V , so �SII = −2NkB ln 2.
In configuration (c), each species spreads energy over volume V , just as in (a), con-
sistent with the overall result �Stotal = 0.

For indistinguishable molecules (black circles become white) in process I there is
no change in energy spreading because the lone species energy was already spreading
energy in both chambers, and �SI = 0.8 In process II, the lone species is compressed
from 2V to V , so

�Stotal = �SII = −2NkB ln 2 for indistinguishable particles. (16)

8In Fig. 4(a), the N particles on the left and N particles on the right have identical energy spectra. In
Fig. 4(b), the 2N particles have a single, compressed spectrum because of the volume increase. In this
view, the result in (15) is not apparent.
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In (c), 2N molecules of the lone species spread energy over volume V , while in (a),
N molecules of the species spread energy over volume V and another N mole-
cules spread energy over a different volume V . Thus, there is more spreading of
the given species and higher entropy in (a), consistent with �Stotal = �SI + �SII =
−2NkB ln 2.

2.8 Metastability, Frozen-in States, and Maxwell’s Demon

It has been assumed throughout that internal energy spreading proceeds unimpeded in
macroscopic systems, consistent with existing external constraints. However, in some
cases there exists internal metastability, which inhibits full spreading of energy over
space and energy modes. This occurs in the cooling of some materials toward 0 K.
For example, glycerin can be cooled to low temperatures without it becoming a solid.
A consequence is that near absolute zero supercooled glycerin’s entropy exceeds the
value of solid glycerin at the same temperature. For the supercooled “glassy liquid,”
full energy spreading to the cold surroundings has not occurred and the substance is
in an internal metastable state, which could be destroyed—with a concomitant energy
transfer to the surroundings—by a small perturbation. This situation is commonly de-
scribed in terms of the glassy liquid being “more disordered” than the corresponding
solid. The latter description hides the important point that energy interactions within
the glycerin are too weak to achieve full spreading—i.e., thermal equilibrium—on
the time scale of the experiments. Put differently, the lowest possible energy state has
not been reached.

An interesting situation exists where states are “frozen in,” and in this case, it
is used to good advantage. A digital memory maintains a state (e.g., magnetization
“upward”) because of the existence of strong internal forces. In the simplest possible
case, one can envisage a single particle in a double potential well, say with occupation
of the left well denoting a “one” and occupation of the right well denoting a “zero.”
Once a particle is in one of the wells, a central potential barrier prevents passage to
the other well under normal temperatures. To erase such a memory one must either
lower the central barrier or raise the particle temperature so that the particle has no
left-right preference.

Rolf Landauer addressed the issue of memory erasure in 1961 [33] and concluded
that erasure of one bit at temperature T requires dissipation of at least energy kBT ln 2
to the environment, with entropy change �(Ssystem + Ssurroundings) ≥ kB ln 2. This
result, commonly called Landauer’s Theorem, has been used to argue that memory
erasure “saves” the second law of thermodynamics from the mischief of a Maxwell’s
demon. The simplest way to understand this is through an ingenious model proposed
by Szilard [34–37]. He envisaged the hypothetical one-particle heat engine illustrated
in Fig. 5.

Insertion of a partition leaves the particle either on the left or right. With infor-
mation on which side it resides, one would know how to configure a pulley system
and external weight pan to enable the “gas” to do work lifting the weight pan. Once
this is done the partition is unlocked, becoming a frictionless, movable piston, and
the gas can do external work W = kB ln 2 as the gas volume is doubled, lifting the
weight pan. Strictly speaking, to keep the process slow and reversible, grains of sand
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Fig. 5 Szilard one-particle gas
engine, as described in the text

can be removed from the weight pan and deposited on shelves (not shown) as the gas
pressure decreases. Replenishment heat energy Qin = kBT ln 2 would come in from
the surroundings, through the container walls and to the particle itself. Measurement
of the particle’s location after partition insertion could be done in principle by a tiny
intelligent being, namely, one with great microscopic observation skills, speed, and a
memory. This constitutes what has come to be called a Maxwell demon [37].

After this work is done, the pulley system and partition are removed and the gas
is in its initial state. A weight has been lifted and the environment has lost some
energy because of the energy transfer to the container, and the particle. In essence,
heat has been converted to work and, ignoring the demon’s memory, it appears that
the second law of thermodynamics has been violated, albeit on a microscopic scale.
But, as pointed out first by Penrose [38] and independently by Bennett [39], the state
of the demon’s memory cannot be ignored.

In Fig. 5(a)–(d), the state of the demon’s memory (RAM) is shown in the small
upper right box. It is initially neutral (N, which can be either R or L), but after mea-
surement, it is R (for right side in this example). After the cycle is run, the memory
must be brought back to its initial, neutral state; i.e., its memory must be erased and
the initial memory state restored, in order to do complete entropy bookkeeping. Ac-
cording to Landauer’s theorem, erasure will send at least energy Qerasure ≥ kBT ln 2
to the surroundings. The latter energy (at least) replenishes the surroundings, and the
work needed to effect memory erasure “pays” for the lifted weight’s gravitational po-
tential energy increase. Assuming thermodynamics ideas can be sensibly applied at
this microscopic level, and that Landauer’s theorem holds, the second law is saved.

In terms of the spreading metaphor, without accounting for the demon, the sur-
roundings would have suffered negative energy spreading because of its loss of en-
ergy. Because there is no energy spreading associated with ideal frictionless macro-
scopic work, this signals a net entropy drop for the isolated system of Szilard engine
plus surroundings. But after erasure of the memory the situation is very different:
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There is a non-negative net change in energy spreading and no violation of the sec-
ond law.

The most interesting aspect of this problem is the situation just before memory
erasure. The environment still has less entropy than it had initially, the weight has
been lifted, and the memory state is either R or L. The question is: at this point in
time, is the second law intact? For this to be so, an entropy of (at least) kB ln 2 must
be attributable to the memory. Because the memory’s bit state is “frozen in,” there
is zero spreading over the R and L states; the memory is either in one or the other.9

From a spreading viewpoint, the second law is violated just prior to erasure, but is
saved by the erasure process.

In contrast, a missing information view leads to assignment of entropy kB ln 2
based upon the absence of information about the bit state of the memory. Similarly, an
algorithmic information view leads to the same entropy for the memory, based upon
the number of bits of information needed to specify its state [40]. The dichotomy
between the spreading and information theory approaches is notable. Related diffi-
culties have generated criticisms of arguments that the second law can be saved by
memory erasure for the Maxwell’s demon conundrum [41, 42].

Finally, it is observed that the validity of Landauer’s theorem, and indeed the sec-
ond law itself, has come in question for small or mesoscopic systems under extreme
quantum conditions [1, 43–47]. These are beyond the scope of this article.

3 Seeking a Spreading Function

We have argued that entropy is a function that represents a measure of spatial spread-
ing of energy and a temporal spreading over energy states. In this section, we indicate
how one can arrive at entropy by seeking a function that is a measure of spreading.
The value of this exercise is that it demonstrates the richness and depth of the spread-
ing metaphor. Typically, existing constraints restrict the spreading of energy spatially.
Examples of such constraints are an insulating wall, immovable partition, non-porous
wall, open electrical switch, and electric or magnetic shielding.

Processes that increase energy spreading are driven by gradients—e.g., of tem-
perature, pressure, or chemical potential. Removal of such a constraint will lead to
increased energy spreading that proceeds so as to decrease the gradient(s). It has
been said [48] that “nature abhors a gradient,” and indeed, all changes in the degree
of spreading are driven by gradients. Examples are replacing an insulating wall with
a conducting one (in the presence of a temperature gradient), making an immovable
wall movable (in the presence of a pressure gradient), and removal of a non-porous
partition (when there is a chemical potential gradient).

Consider an energy exchange between two identical macroscopic bodies that are
initially at different temperatures. The higher temperature body has larger internal
energy, and the energy exchange allows the energy to become distributed equitably.
Symmetry dictates that the final internal energies be equal. Evidently, energy spreads

9It is assumed that the thermodynamic entropy, and concomitant spreading, associated with the memory’s
other degrees of freedom, have not changed throughout the engine’s operation.
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over space maximally. If it spreads less than maximally, the lower temperature body
would end with a temperature below the other body, and if it spread ‘too much,’
the initially lower temperature body would become the higher temperature one—and
such configurations are equivalent to the less than maximal ones that were discussed
already.

Does a spreading function exist for this two body system? That is, can energy
spreading be quantified? We require that a bona fide spreading function, which we
call J , have the following properties. In essence, these are postulates that are deemed
reasonable for such a function.

1. For a homogeneous body, J is a function of the system’s energy E, volume V ,
and particle number N . Rationale: These are common thermodynamic variables,
for one-component systems.

2. At uniform temperature, J is an increasing function of energy E. Rationale: More
energy means there is more energy to spread and thus more spreading.

3. For a body made of the same material, but with twice the volume and energy, the
value J is double that of the original body; i.e., J (2E,2V,2N) = 2J (E,V,N).
This requires the degree of spreading to double when twice the energy spreads
over twice the number of particles occupying twice the volume. A generalization
is that for any real β ≥ 0, J (βE,βV,βN) = βJ (E,V,N), which is the property
called extensivity.10 Rationale: Clearly there should be more spreading for β > 1,
and it is reasonable that, for example, doubling E,V,N also doubles J (E,V,N).
Halving E,V,N would give half as much spreading, and so forth.

4. For two systems, labeled a and b, Ja+b = Ja(Ea,Va,Na) +Jb(Eb,Vb,Nb). Ra-
tionale: We require that the spreading function be additive, as are internal energy,
volume, and particle number themselves. This is based on the belief that spreading
effects on boundaries of systems a and b are negligible, being overwhelmed by
the spreading over volumes. It is assumed that particles interact via short-range
interatomic and intermolecular forces.

5. Ja+b is maximal at equilibrium.11 Rationale: Spreading continues until equilib-
rium is reached and cannot become larger. This will become more clear in the
following example.

Using a symmetry argument, the assumed existence of maximum spatial spreading
at equilibrium for identical systems demands that if the initial body energies are Ea

and Eb > Ea , then the final energy of each is

Ef = 1

2
(Ea + Eb). (17)

According to postulate 4, after equilibration,

Ja+b = Ja(Ef ) +Jb(Ef ) = 2J (Ef ), (18)

10Systems with long-range forces—e.g., gravitational and electric—do not satisfy the extensivity condi-
tion and the framework here does not apply to such systems.
11The development here is for equilibrium states only. It is not known if a generalization of the spreading
picture to nonequilibrium states is possible.
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Fig. 6 Spreading function
J (E,V,N) as a function of E

for two identical system with
initial energies Ea and Eb , and
final energy Ef for each

and postulate 5 demands that

Ja+b(Ef ) = 2J (Ef ) ≥ J (Ea) +J (Eb) with Ea ≤ Ef ≤ Eb. (19)

Expression (19) defines a concave function, and the temperature equilibration process
looks as shown in Fig. 6. In the final state, the value of J is the same for each body
and, of course, all derivatives are the same. Figure 6 shows that although systems
a and b each experience the same magnitude energy change, concavity assures that
system a has a greater increase in its spreading function than system b.

Now consider two bodies of the same material, one (system a) of which has twice
the volume and particle number of the other (system b), with total energy Ea + Eb =
E. Suppose the two bodies each have equal initial energies: Ea,i = Eb,i = E/2. We
expect system a’s initial temperature to be lower than system b’s, given that is has
the same energy as the smaller system b. When the two systems are put in thermal
contact with one another, energy will spread until it is shared equitably by the two
subsystems, namely, with final energies Ea = 2E/3 and Eb = E/3. A bit of mathe-
matics shows that this is consistent with Ja+b being maximized; i.e., equitable energy
sharing occurs when the total spreading function is maximized relative to the existing
constraint Ea + Eb = E. Specifically,

(∂Ja/∂Ea)|Ea=2E/3 = (∂Jb/∂Eb)|Eb=E/3. (20)

This analysis can easily be extended to system a being β times larger than
the otherwise identical system b. After equilibration, the final energies will be
Ea,f = βE/(β + 1) and Eb,f = E/(β + 1), with (∂Ja/∂Ea)|Ea,f =βE/(β+1) =
(∂Jb/∂Eb)|Eb,f =E/(β+1). Again, this maximizes Ja+b . More generally, for any two
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Fig. 7 Spreading functions J (E,V,N) vs. E for two different materials. Initially, the systems have the
same energy E, and (∂Ja/∂Ea)|Ea=E > (∂Jb/∂Eb)|Eb=E . Concavity guarantees that the only energies
for which an infinitesimal variation of Ea and Eb with Ea + Eb fixed gives dJ = 0 are Ea,f and Eb,f ,
at which (∂Ja/∂Ea)|Ea=Ea,f

= (∂Jb/∂E)|Eb=Eb,f

different systems, of different types and/or sizes, maximization of spreading leads to
the following generalization of (20),

(∂Ja/∂Ea)|Ea=Ea,f
= (∂Jb/∂Eb)|Eb=Eb,f

(21)

which determines Ea,f and Eb,f = E −Ea,f . Here, we assume, based on the pattern
seen above, that equitable energy sharing occurs when spreading is maximized.

Figure 7 shows how the spreading functions and the equilibration process might
look for two different-sized and/or different type systems that begin with equal en-
ergies and then share energy until thermal equilibrium exists. Given the above dis-
cussion and the observation, using Fig. 7, that (∂Ja/∂Ea)|Ea=E > (∂Jb/∂Eb)|Eb=E

it is suggestive that ∂J /∂E is inversely related to temperature. The simplest such
relationship is

(∂J /∂E)V,N = 1/T . (22)

With this definition, ∂J /∂E decreases and T increases as energy increases for each
system. Furthermore, Ja increases more than Jb decreases, consistent with the total
spreading function J = Ja +Jb increasing to a maximum at equilibrium.

For a constant-volume heating process that proceeds along a given J curve,
dE = δQ, where δQ is the (inexact) heat differential. Equation (22) implies that
dJ = dE/T ≡ δQ/T , in analogy with the Clausius entropy form dS = δQ/T .
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Thus, with the temperature definition (22), the spreading function J shares the im-
portant mathematical property dJ = δQ/T with entropy S. More connections be-
tween J (E,V,N) and S(E,V,N) can be made, and the interested reader is directed
to Ref. [19] for further details. The main conclusion is

J ←→ S. (23)

Entropy has properties of a spreading function and, in turn, one can use expected
properties of a spreading function to obtain the entropy function.

4 Concluding Remarks and Questions

Although entropy is intimately related to the second law of thermodynamics, it is
also true that the well known statements of the second law by Clausius and by Kelvin
and Planck neither use nor require the entropy concept. Čápek and Sheehan [1] have
pointed out that most current challenges to the second law entail heat and work, rather
than entropy. Further, they wrote, “Entropy remains enigmatic. The more closely
one studies it, the less clear it becomes. Like a pointillism painting whose meaning
dissolves into a collection of meaningless points when observed too closely, so too
entropy begins to lose meaning when one contemplates it at a microscopic level.”

The scope of this article is highly limited, being directed primarily at developing
the spreading metaphor as an interpretive tool. It is by no means clear whether the
spreading concept can developed more fully mathematically, for example, for sys-
tems not in thermodynamic equilibrium. Were that possible, one might hope for a
way to address non-equilibrium entropy. Similarly it is not clear if the spreading con-
cept can be usefully extended to non-extensive systems characterized by long-range
gravitational and/or electric forces.

Questions abound. Can improved language help to clarify the meaning and im-
prove the utility of entropy and, if so, can the spreading metaphor help in this regard?
Can the spreading metaphor be helpful when S is not well defined? Can this metaphor
shed light on situations where the second law of thermodynamics is suspected of be-
ing, or is shown to be, violated? Can the spreading concept be used in combination
with one or more other metaphors—e.g., multiplicity and/or missing information—to
provide a more complete qualitative description of entropy? It is hoped that time will
bring answers to these questions.

Acknowledgements I thank Frank Lambert for stimulating discussions and ideas during the last several
years, which rekindled my interest in entropy, its language, and understanding.
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1. Čápek, V., Sheehan, D.P.: Challenges to the Second Law of Thermodynamics—Theory and Experi-
ment. Springer, Dordrecht (2005)

2. Boltzmann, L.: Lectures on Gas Theory—Part I, pp. 441–443. Barth, Leipzig (1896), reprinted by
University of California Press, Berkeley (1964)

3. Burgers, J.M.: Entropy and disorder. Br. J. Philos. Sci. 5, 70–71 (1954)



Found Phys

4. Styer, D.F.: Insight into entropy. Am. J. Phys. 68, 1090–1096 (2000)
5. Darrow, K.K.: The concept of entropy. Am. J. Phys. 12, 183–196 (1944)
6. Bohren, C.F., Albrecht, B.A.: Atmospheric Thermodynamics, pp. 150–152. Oxford University Press,

Oxford (1998)
7. Dingle, H.: Bull. Inst. Phys. 10, 218 (1959)
8. Wright, P.G.: Entropy and disorder. Contemp. Phys. 11, 581–588 (1970)
9. Lambert, F.L.: Disorder—a cracked crutch for supporting entropy discussions. J. Chem. Ed. 79, 187–

192 (2002), revised web version: http://www.entropysite.com/cracked_crutch.html. See also Lam-
bert’s website, http://www.entropysite.com for related discussions

10. Gibbs, J.W.: The Scientific Papers of J. Willard Gibbs, vol. 1, p. 418. Constable, London (1906),
reprinted by Dover, New York (1961)

11. Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. 106, 620–630 (1957)
12. Baierlein, R.: Teaching the approach to thermodynamic equilibrium: some pictures that help. Am. J.

Phys. 46, 1042–1045 (1978)
13. Swanson, R.M.: Entropy measures amount of choice. J. Chem. Ed. 67, 206–208 (1990)
14. Brissaud, J.B.: The meanings of entropy. Entropy 7, 68–96 (2005)
15. Clausius, R.: On the application of the theorem of the equivalence of transformations to the internal

work of a mass of matter. Philos. Mag. 24, 81–97 (1862), Reprinted in Kestin, J. (ed.) The Second
Law of Thermodynamics. Dowden, Hutchinson & Ross, Stroudsberg (1976)

16. Klein, M.J.: Gibbs on Clausius. Hist. Stud. Phys. Sci. 1, 127–149 (1969)
17. Denbigh, K.G.: The many faces of irreversibility. Br. J. Philos. Sci. 40, 501–518 (1989)
18. Denbigh, K.G.: The Principles of Chemical Equilibrium. Cambridge University Press, Cambridge

(1961), Sect. 1.7
19. Leff, H.S.: Thermodynamic entropy: the spreading and sharing of energy. Am. J. Phys. 64, 1261–1271

(1996)
20. Lambert, F.L.: Entropy is simple, qualitatively. J. Chem. Ed. 79, 1241–1246 (2002), revised web

version: http://www.entropysite.com/entropy_is_simple/index.html
21. Gross, D.H.E.: Microcanonical Thermodynamics: Phase Transitions in ‘Small’ Systems. World Sci-

entific, Singapore (2001)
22. Leff, H.S.: What if entropy were dimensionless? Am. J. Phys. 67, 1114–1122 (1999)
23. Falk, H.: Physica 29, 1114 (1963)
24. Baierlein, R.: Forces, uncertainty, and the Gibbs entropy. Am. J. Phys. 36, 625–629 (1968)
25. Leff, H.S.: Entropy differences between ideal and nonideal systems. Am. J. Phys. 37, 548–553 (1969)
26. Bruch, L.W., Schick, M., Siddon, R.L.: Limitation on the quantum-mechanical extension of Baier-

lein’s entropy theorem. Am. J. Phys. 44, 1007–1008 (1976)
27. Leff, H.S.: Teaching the photon gas in introductory physics. Am. J. Phys. 70, 792–797 (2002)
28. Anderson, M.H., Ensher, J.R., Matthews, M.R., Wieman, C.E., Cornell, E.A.: Observation of Bose–

Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995)
29. Pathria, R.K.: Statistical Mechanics, 2nd edn. Butterworth–Heinemann, Oxford (1996), Chaps. 7, 8
30. Goussard, J., Roulet, B.: Free expansion for real gases. Am. J. Phys. 61, 845–848 (1993)
31. Lesk, A.M.: Entropy changes in isothermal expansions of real gases. Am. J. Phys. 42, 1030–1033

(1974)
32. Leff, H.S.: Entropy changes in real gases and liquids. Am. J. Phys. 43, 1098–1100 (1975)
33. Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5, 183–

191 (1961)
34. Szilard, L.: On the decrease of entropy in a thermodynamic system by the intervention of intelligent

beings. Z. Phys. 53, 840–856 (1929)
35. Feld, B.T., Weiss Szilard, G.: The Collected Works of Leo Szilard: Scientific Papers. pp. 103–129.

MIT Press, Cambridge (1972), English translation is by A. Rapoport and M. Knoller
36. Wheeler, J.A., Zurek, W.H.: Quantum Theory and Measurement, pp. 539–548. Princeton University

Press, Princeton (1983)
37. Leff, H.S., Rex, A.F. (eds.): Maxwell’s Demon 2: Entropy, Classical and Quantum Information, Com-

puting. Institute of Physics, Bristol (2003), now distributed by Taylor & Francis
38. Penrose, O.: Foundations of Statistical Mechanics, pp. 221–238. Pergamon, Oxford (1970)
39. Bennett, C.H.: The thermodynamics of computation—a review. Int. J. Theor. Phys. 21, 905–940

(1982), reprinted in Ref. [37]
40. Zurek, W.H.: Algorithmic randomness and physical entropy. Phys. Rev. 40, 4731–4751 (1989)
41. Earman, J., Norton, J.D.: Exorcist XIV: the wrath of Maxwell’s demon, part I: from Maxwell to

Szilard. Studies Hist. Philos. Mod. Phys. 29, 435–471 (1998)



Found Phys

42. Earman, J., Norton, J.D.: Exorcist XIV: the wrath of Maxwell’s demon, part II: from Szilard to Lan-
dauer and beyond. Studies Hist. Philos. Mod. Phys. 30, 1–40 (1999)

43. Allahverdyan, A.E., Nieuwenhuizen, T.M.: Breakdown of the Landauer bound for information erasure
in the quantum regime. Phys. Rev. E 64, 0561171–0561179 (2001)

44. Allahverdyan, A.E., Nieuwenhuizen, T.M.: Testing the violation of the Clausius inequality in
nanoscale electric circuits. Phys. Rev. B 66, 1153091–1153095 (2002)

45. Allahverdyan, A.E., Balian, R., Nieuwenhuizen, T.M.: Thomson’s formulation of the second law: an
exact theorem and limits of its validity. In: Sheehan, D.P. (ed.) Quantum Limits to the Second Law.
AIP Conference Proceedings, vol. 643. American Institute of Physics, New York (2002)

46. Allahverdyan, A.E., Nieuwenhuizen, T.M.: Unmasking Maxwell’s demon. In: Sheehan, D.P. (ed.)
Quantum Limits to the Second Law. AIP Conference Proceedings, vol. 643. American Institute of
Physics, New York (2002)

47. Nieuwenhuizen, T.M., Allahverdyan, A.E.: Quantum Brownian motion and its conflict with the sec-
ond law. In: Sheehan, D.P. (ed.) Quantum Limits to the Second Law. AIP Conference Proceedings,
vol. 643. American Institute of Physics, New York (2002)

48. Schneider, E.D., Sagan, D.: Into the Cool: Energy Flow, Thermodynamics, and Life. University of
Chicago Press, Chicago (2005)


	Entropy, Its Language, and Interpretation
	Abstract
	Introduction
	The Disorder Metaphor
	Missing Information, Multiplicity, Optiony, Freedom, Unavailability
	The `Spreading' Metaphor

	Spreading in Equilibrium Thermodynamic States
	Following Boltzmann's Lead
	Maxwell Momentum Distribution
	Effects of Interparticle Forces
	Photon Gas
	Thermal Wavelength and Spreading
	Free and Non-Free Expansions
	Mixing of Gases
	Metastability, Frozen-in States, and Maxwell's Demon

	Seeking a Spreading Function
	Concluding Remarks and Questions
	Acknowledgements
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


