New Approaches for Performance Optimization and Analysis of Large-Scale Dynamic Social Network Analysis using Anytime Anywhere Algorithms

Eunice E. Santosa, Vairavan Murugappana and John Korahb

a School of Information Sciences, University of Illinois at Urbana-Champaign
b Department of Computer Science, California State Polytechnic University Pomona
Social Network Analysis

- Dramatic increase in the availability of dynamic data from various information sources
 - Example: Social media networks, smart sensors, stock market, etc.

- Facebook (over 2.3 billion active users\(^a\)), Twitter (300 million active users\(^b\)), LinkedIn (610 million users\(^c\))
 - Network dynamism - relationships, followers and connections
 - Continuously evolving networks

- Opportunities and Applications:
 - Large datasets significantly extends our understanding of underlying social phenomenon
 - Disaster management, Health care, Business analytics

\(^a\) https://newsroom.fb.com/company-info/ \(^b\) https://about.twitter.com/company \(^c\) https://press.linkedin.com/about-linked
Challenges

Network size:
– Computation time and resources increases dramatically with network size
– Restricts the utility of social network analysis (SNA) in time critical applications

Network Dynamism:
– On average about 500 million new tweets every daya
– In many real-time social media analytics and disaster management, the underlying network is evolving
– Restarting or analyzing static snapshot of the network will often yield poor performance

Load Balancing:
– Distributed storage and dynamism causes load imbalance
– Most social networks are small-world networks and exhibit power law characteristics

a http://www.internetlivestats.com/twitter-statistics/
Our Focus

• Handle dynamic changes as quickly as possible

• Maximize the accuracy of the network state and analysis

• Reduce overhead during load balancing

• Key idea is to balance the workload and reduce idleness without network repartitioning
Current Works

• Dynamic graph partitioning methods
 – Involves some form of data migration to reduce imbalance
 – Vertex migration, Label propagation, Repartitioning
 – [Khayyat2013, Tsourakakis2014, Khandelwal2017]

• Mizan [Khayyat2013], a graph load balancing system migrates the vertices to different processors based on the runtime metrics such as the number of outgoing messages, incoming messages and response time for each step.

• Vaquero et al. [Vaquero2013] proposed a load balancing system where the vertex migration is decided based on the number of neighbors.

• Hermes [Nicoara2015], provides a dynamic graph repartitioning algorithm to reduce the number of edges between partitions. However, their main focus is on providing graph management rather than graph analysis.
Anytime Anywhere Framework for Network Analysis

• Designing efficient parallel/distributed algorithms for
 – Handling large and dynamic network analysis.
 – Efficiently incorporate dynamic changes and minimize recomputations.
 – Providing non-trivial intermediate results.
 – Computational platform independent.

• Centrality, is a key measure to understand and analyze actor roles in social network.
 – Used to identify influential and critical actors in the network.
 – Various centrality measures: Degree centrality, Closeness centrality [Yannick2009], Betweenness centrality
Anytime Anywhere Phases for Network Analysis

Input graph for analysis

Input graph is partitioned into sub-graphs based on the community structure and the number of processors.

Initial analysis is performed on individual processors, provides preliminary results

Individual results are combined and refined iteratively (dashed lines represent edge changes)

Anytime Anywhere Architecture [Santos et al. 2006, 2006a, 2016, 2016a, 2017a, 2018]
Edge deletion algorithm - Recap

• In this work we focus on edge deletion [Santos2016]
 – Has one of the higher workloads but does not create a large memory imbalance among processors

• Algorithm
 1. Communicate edge to be deleted along with the target node’s distance vector to all processors
 2. Identify affected paths in all processors and reset it (to \(\infty\))
 3. Recalculate all the affected paths using the neighbors distance vector.
Edge Deletion

\[u_1v_1 = u_1a + ab + bv_1 \]

Distance Vector in processor of \(u_1 \)

Distance Vector of vertex \(b \)

Edge Deletion

\[\text{Set to } \infty \]
Edge Deletion – Pseudo-code

Recalculate affected shortest paths

WHILE Q is not empty

Dequeue (u, v) from Q

FOR EACH neighbor u’ of u in sub-graph G_i

IF $DV_i[u][v] > DV_i[u][u’] + DV_i[u’][v]$

$DV_i[u][v] = DV_i[u][u’] + DV_i[u’][v]$

mark $DV_i[u][v]$ as updated

\[u_1v_1 = \min(a_1v_1, a_2v_1, a_3v_1) \]
Deferring Changes

• Balance the number of affected paths recalculated across processors in each iteration.
 – Portion of the workload is moved to future iterations
 – Reduces load imbalance and idleness among processors
• Figure shows handling average number of affected paths (AP)
 – Non-buffer-based method: Recalculate all the affected path in each iteration
 – Buffer-based method: Balances the number of affected paths recalculated
• Constraints
 – Max Buffer Size (B), in terms of number of the affected paths
 – Max number of recombination steps that an affected path can be deferred (T)
Deferring Changes

\[|H'_{i,k}| = \begin{cases}
\min \left(\max \left(\frac{\sum_{j=1}^{top} |\hat{H}_{j,k}|}{P}, |H_{i,k}| - B, |\hat{H}_{i,k}| \right), k \leq T \right) \\
\min \left(\max \left(\frac{\sum_{j=1}^{top} |\hat{H}_{j,k}|}{P}, |\hat{H}_{i,k}| - B, |\hat{H}_{i,k} - T| - \sum_{r=k-T}^{k-1} |H'_{i,r}| \right), |\hat{H}_{i,k}| \right), k > T
\end{cases} \]

- Where,
 - \(|H'_{i,k}| \) is the number of affected paths selected to be recalculated on processor \(p_i \) at iteration \(k \)
 - \(|\hat{H}_{i,k}|\) is the number of overall affected paths on processor \(p_i \) at iteration \(k \) that are available to be recalculated, including the ones carried over from previous iterations.
 - \(P \) is the number of processors
 - \(B \) and \(T \) are the constraints
Deferring Changes

\[|H_{i,k}'| = \begin{cases}
\min \left(\max \left(\frac{\sum_{j=1}^{t_o} |\hat{H}_{j,k}|}{P}, |\hat{H}_{i,k} - B|, |\hat{H}_{i,k} - \hat{H}_{i,k}'| \right), k \leq T \\
\min \left(\max \left(\frac{\sum_{j=1}^{t_o} |\hat{H}_{j,k}|}{P}, |\hat{H}_{i,k} - B|, |\hat{H}_{i,k} - \sum_{r=k-T}^{k-1} |H_{i,r}'| \right), |\hat{H}_{i,k}| \right), k > T
\end{cases} \]

- Average number of affected paths across all processors that are available to recalculate
Deferring Changes

\[|H'_{i,k}| = \begin{cases}
\min \left(\max \left(\frac{\sum_{j=1}^{top} |\hat{H}_{j,k}|}{p}, |H_{i,k}| - B, |\hat{H}_{i,k}| \right), k \leq T \\
\min \left(\max \left(\frac{\sum_{j=1}^{top} |\hat{H}_{j,k}|}{p}, |\hat{H}_{i,k}| - B, |\hat{H}_{i,k}| - \sum_{r=k-T}^{k-1} |H'_{i,r}| \right), k > T \right)
\end{cases} \]

- Average number of affected paths across all processors that are available to recalculate
- To maintain the buffer constraint \(B \)
Deferring Changes

\[
|H'_{i,k}| = \begin{cases}
\min \left(\max \left(\frac{\sum_{j=1}^{top} |\hat{H}_{j,k}|}{P}, |\hat{H}_{i,k} - B|, |\hat{H}_{i,k}| \right), k \leq T \\
\min \left(\max \left(\frac{\sum_{j=1}^{top} |\hat{H}_{j,k}|}{P}, |\hat{H}_{i,k} - B|, |\hat{H}_{i,k}| \right), |\hat{H}_{i,k}| - \sum_{r=k-T}^{k-1} |H'_{i,r}| \right), k > T
\end{cases}
\]

- Average number of affected paths across all processors that are available to recalculate
- To maintain the buffer constraint \(B \)
- To ensure that an affected path is not deferred for more than \(T \) iterations
Buffer-based method

- Two types of Buffer-based method for deferring changes
 - Type A and Type B
 - In both cases the workload for each processor is same for communication, identification and refinement

- Non-Buffer-based method – Recalculate all the affected paths using the neighbors distance vector.
- Type A – Recalculate affected paths such that the workload is balanced across processors and defer the rest to future iterations
- Type B – Recalculate the affected paths only on the processor with the edge

- By performing theoretical analysis we show that
 - For most conditions with reasonable assumptions
 - Our method performs asymptotically no worse than the non-buffer-based method for edge deletion during closeness centrality computation.
Conclusion & Future Directions

• Current load balancing methods focus on vertex migration and dynamic graph partitioning.
• We show that load balancing can also be performed by deferring the changes across time steps.
 – Without incurring the data migration overhead
• In future, we will validate our method experimentally using real-world and synthetic networks
• We will also examine the performance of this approach for other types of changes
 – Vertex additions/deletions, edge additions and edge weight changes
References