
, nternal Forces
7.1 Internal Forces Developed in

Structural Members

The design of any structural or mechanical member requires an investigation
of the loading acting within the member in order to be sure the material
can resist this loading. These internal loadings can be determined by using
the method of sections. To illustrate this method, consider the "simply
supported" beam shown in Fig. 7-la, which is subjected to the forces Fj and
F2 and the support reactions Av, Av, and Ey, Fig. 7-16. If the internal
loadings acting on the cross section at C are to be determined, then an
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imaginary section is passed through the beam, cutting it into two segments.
By doing this the internal loadings at the section become external on the
free-body diagram of each segment, Fig. 7-1 c. Since both segments (AC and
CB) were in equilibrium before the beam was sectioned, equilibrium of
each segment is maintained provided rectangular force components Nc and
Vc and a resultant couple moment Mc are developed at the section. Note
that these loadings must be equal in magnitude and opposite in direction on
each of the segments (Newton's third law). The magnitude of each of these
loadings can now be determined by applying the three equations of
equilibrium to either segment AC or CB. A direct solution for Nc is obtained
by applying ^Fx = 0;VC is obtained directly from ~2,Fy = 0; and Mc is
determined by summing moments about point C, 2MC = 0, in order to
eliminate the moments of the unknowns Nc and Vc.

In mechanics, the force components N, acting normal to the beam at
the cut section, and V, acting tangent to the section, are termed the
normal or axial force and the shear force, respectively. The couple
moment M is referred to as the bending moment, Fig. 1-T.a. In three
dimensions, a general internal force and couple moment resultant will
act at the section. The x, y, z components of these loadings are shown in
Fig. 7-26. Here Ny is the normal force, and VA. and Vz are shear force
components. My is a torsional or twisting moment, and Mx and Mz

are bending moment components. For most applications, these resultant
loadings will act at the geometric center or centroid (C) of the section's
cross-sectional area. Although the magnitude for each loading generally
will be different at various points along the axis of the member, the
method of sections can always be used to determine their values.
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Free-Body Diagrams. Trusses are composed of two-force members
that only support normal loads. On the other hand, frames and machines
are composed of multiforce members, and so each of these members will
generally be subjected to internal normal, shear, and bending loadings.
For example, consider the frame shown in Fig. 7~3a. If the blue section is
passed through the frame to determine the internal loadings at points //,
G, and F, the resulting free-body diagram of the top portion of this section
is shown in Fig. 7-36. At each point where a member is sectioned there is
an unknown normal force, shear force, and bending moment. As a result,
we cannot apply the three equations of equilibrium to this section in order
to obtain these nine unknowns. Instead, to solve this problem we must
first dismember the frame and determine the reactions at the connections
of the members using the techniques of Sec. 6.6. Once this is done, each
member may then be sectioned at its appropriate point, and the three
equations of equilibrium can be applied to determine N, V, and M. For
example, the free-body diagram of segment DC, Fig. 7-3c, can be used to
determine the internal loadings at G"provided the reactions of the pin,
DA and D, are known.
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EXAMPLE 7.3
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The beam supports the loading shown in Fig. 7-6a. Determine the
internal normal force, shear force, and bending moment acting just to
the left, point B, and just to the right, point C, of the 6-kN force.

|6kN

9 k N - m

(a)

SOLUTION

Support Reactions. The free-body diagram of the beam is shown in
Fig. l-6b. When determining the external reactions, realize that the
9-kN • m couple moment is a free vector and therefore it can be placed
anywhere on the free-body diagram of the entire beam. Here we will only
determine Ay, since segments AB and AC will be used for the analysis.

i+SMfl = 0; 9 k N - m '+ (6kN)(6m) - Ay(9m) = 0

Ay = 5 kN

Free-Body Diagrams, The free-body diagrams of the left segments
AB and AC of the beam are shown in Figs. 7-6c and 7-6d. In this case
the 9-kN • m couple moment is not included on these diagrams since it
must be kept in its original position until after the section is made and
the appropriate body is isolated. In other words, the free-body diagrams
of the left segments of the beam do not show the couple moment since
this moment does not actually act on these segments.

Equations of EquiEibrajm.

Segment AB

Fv = 0; NB = 0 Ans.
Fy = 0; 5 kN - VB = 0 VB = 5 kN Ans.

= 0; -(5 kN)(3 m) + MB = 0 MB = 15 kN • m Ans.

Ans.
Vc = 1 kN Ans.

Mc = 15 k N - m Ans.

force in both cases is

Segment AC

-*> 2FV = 0; Nc = 0
+ t SFV = 0; 5 kN - 6 kN + Vc = 0
i+2Mc = 0; -(5 kN)(3 m) + Mc = 0

Here the moment arm for the 5-kN

r
A\°

-3m- -6m

(b)

5kN

(c)

approximately 3 m since B and C are "almost" coincident.
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Determine the internal normal force, shear force, and bending
moment acting at point B of the two-member frame shown in
Fig. 1-1 a.

SOLUTION

Support Reactions. A free-body diagram of each member is shown
in Fig. 7-76. Since CD is a two-force member, the equations of
equilibrium need to be applied only to member AC.

= 0; -400 Ib (4 ft) + (\DC(& ft) = 0 FDC = 333.3 Ib

= 0; -A, + (|)(333.3 Ib) = 0 Ax = 266.7 Ib

j = 0; Ay - 400 Ib + f (333.3 Ib) = 0 Av = 200 Ib

Free-Body Diagrams, Passing an imaginary section perpendicular
to the axis of member AC through point B yields the free-body
diagrams of segments AB and BC shown in Fig. 7-7c. When
constructing these diagrams it is important to keep the distributed
loading exactly as it is until after the section is made. Only then can it
be replaced by a single resultant force. Why? Also, notice that NB, \,
and M# act with equal magnitude but opposite direction on each
•segment—Newton's third law.

Equations of Equilibrium. Applying the equations of equilibrium
to segment AB, we have

= 0;

= 0;

= 0;

NB- 266.7 Ib = 0 NB = 267 Ib Ans.

200 Ib - 200 Ib - VB = 0 VB = 0 Ans.

MB - 200 Ib (4 ft) + 200 Ib (2 ft) = 0
MB = 400 Ib • ft Ans.

NOTE: As an
segment BC.

exercise, try to obtain these same results using

200 Ib

|—2 ft-— 2 ft-|

7.66.7 Ih.
-«— \jl

|

Fig. 7-7

M»

200 Ib

[-2 ft— 1-2 ft— [

B

333.3 Ib

(c)



Friction Questions: PageS

Question 1: 8-37. The man having a weight of 150 Ib pushes
horizontally on the bottom of crate A, which is stacked on
top of crate B. Each crate has a weight of 100 Ib. If the
coefficient of static friction between each crate is fis = 0.8
and between the bottom crate, his shoes, and the floor is
/4 = 0.3, determine if he can cause impending motion.

Question 2: 8-63. The wedge is used to level the floor of a building.
For the floor loading shown, determine the horizontal
force P that must be applied to move the wedge forward.
The coefficient of static friction between the wedge and the
two surfaces of contact is fj,s = 0.25. Neglect the size and
weight of the wedge and the thickness of the beam.

4kN 4kN
2kN 2kN

Question 3- *8-64. The three stone blocks have weights of
WA = 600 lb,Ws = 150 Ib, and Wc = 500 Ib. Determine
the smallest horizontal force P that must be applied to
block C in order to move this block. The coefficient of static
friction between the blocks is /u.s = 0.3, and between the
floor and each block ft,s' - 0.5.



If:
a angle between R and the vertical axis,
e angle between inclined surface and the horizontal axis,

then:
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(a) Impending motion upward (b) Impending motion downward with <f>s > 9 (c) Impending motion downward with fa < 6

=$ +e = < > - e



Question 1:

4-139. The loading on the bookshelf is distributed as shown.
Determine the magnitude of the equivalent resultant
location, measured from point O.

Page7

Centroid

2 Ib/ft

Prob. 4-139

3.5 Ib/ft

Question 2:

4-146. The beam supports the distributed load caused by
the sandbags. Determine the resultant force on Ihe beam and
specify its location measured from point A.

1.5kN/m
2.5 kN/m

A

3m -3m H-1.5m-

Prob. 4-146



Question 3: Center of Gravity of a Composite Body

Problem Statement The base of the composite machine part shown in Fig. E8.13a has
specific weight y = 78 kN/m3. The remainder of the part has specific weight y =
26 kN/m3. Determine the center of gravity of the part, with respect to the xyz axes shown.
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Figure E8.13a

Solution

Part 2

Parti

Figure E8.13b

The assembly consists of the base (part 1), the triangular prism (part 2), and the vertical
rectangular slab without the hole (part 3). A circular disk forming the hole (part 4) must
be removed from part 3 (see Fig. E8.13b). Since the disk is removed, its weight is listed as
negative in Table E8.13, which presents the results of calculations.

Using Eq. (8.1) and the sums from Table E8.13, we obtain coordinates of the center
of gravity as

-1.42
y = ̂ -rr = -2.58 mm

550.42

69.81

550.42
= 126.83 mm

Table E8.13
Center of gravity of a composite body

PART

i

1

2

3

4

Sums

VOLUME
[10« mm3]

V,
6.2500

0.9375

1.8750

-0.3927

—

WEIGHT

[N]

w, = y,Vi

487.50

24.38

48.75

-10.21

550.42

CENTROID DISTANCES
[mm]

x,
50

150

175

150
—

Vi
0

100
-100

-100

—

Zt

125.00

166.67

125.00

125.00

—

MOMENTS OF THE WEIGHTS
[N-m]

w*
24.38

3.66

8.53

-1.53

35.04

wty,
0.00

2.44

-4.88

1.02

-1.42

WA
60.94

4.06

6.09

-1.28

69.81


