Calibrating Star Formation Rates on the Galactic Mesoscale

Matthew S. Povich
Assistant Professor, Department of Physics & Astronomy
California State Polytechnic University, Pomona, CA USA
Key Collaborators

Penn State
Leisa Townsley
Patrick Broos
Konstantin Getman
Eric Feigelson
Mike Kuhn

University of Wisconsin
Edward Churchwell
Barbara Whitney
Marilyn Meade
Brian Babler

University of Arizona
John Bieging
Nathan Smith

University of Exeter
Tim Naylor

Cal Poly Pomona
Alex Rudolph
Remington Sexton*¹
Nicole Sanchez*²
Alec Vinson*³
Anoush Kazarians**

* PhD student
¹ Now at UCR
² Now at Fisk U.
³ Now at UCLA
** Undergrad
Some Definitions

• **Microscale Star Formation**
 - *Few O stars, ONC is most massive cluster.*

• **Macroscale Star Formation** — Extragalactic studies, including starbursts (e.g. Kennicutt 1998, Gao & Solomon 2004, Kennicutt et al. 2009) or parts of galaxies at 0.1-1 kpc scales (e.g. Calzetti et al. 2007, Faesi et al. 2014)

• **Mesoscale Star Formation**
 - Case Study: The Carina Nebula Complex (Povich et al. 2011a,b)
 - Comparative Studies: Chomiuk & Povich (2011), MYStIIX (+ MAGIX?)
The Schmidt-Kennicutt “Law”

Schmidt (1959):
\[\Sigma_{\text{SFR}} = A \Sigma_{\text{gas}}^N \]

based on observations of stars and gas in the Solar neighborhood.

Kennicutt (1998):
\[N = 1.4 \pm 0.15 \]

(slope of line fit to data in plot) for a sample of normal, disk galaxies (filled circles, open circles for galaxy centers) and starburst galaxies (squares).
Mesoscale Case Study: The Chandra Carina Complex Project (CCCP)

- Use wide-field, high-resolution, multiwavelength datasets to directly observe the young stellar population of the Great Nebula in Carina and measure its star formation rate (SFR).

- Why Carina?
 - Nearest analog of extragalactic “starburst” regions.
 - Because we’re masochists…

Townsley et al. (2011a) + 15 other papers in an ApJS Special Issue (volume 196)
Hubble Space Telescope image of Herbig-Haro jets and pillars in the Carina Nebula
Hubble Space Telescope
~6′ × 12′ mosaic of the
Great Nebula in Carina
Narrow-band visual images by John Gleason, http://jpgleason.zenfolio.com/~2°x2°

D \sim 2.3 \text{ kpc}, 10’ \sim 6.7 \text{ pc.}

Bipolar, proto-superbubble!

The Great Nebula in Carina

- Carina is a “starburst region,” an example of the large-scale star formation seen in starburst galaxies.

- Carina contains at least 200 O and early-B stars, including the prototype O2 I star, +WRs +Eta Car.
~2°x2°

D ~ 2.3 kpc,
10’ ~ 6.7 pc.
Bipolar, proto-
superbubble!

The Great Nebula in Carina

- Carina is a “starburst region,” an example of the large-scale star formation seen in starburst galaxies.

- Carina contains at least 200 O and early-B stars, including the prototype O2 I star, +WRs +Eta Car.
The *Chandra* Carina Complex Project (CCCP)

- 0.50 – 0.70 keV
- 0.70 – 0.86 keV
- 0.86 – 0.96 keV

Townsley et al. (2011b)
Pre-Main Sequence Stars: Magnetic reconnection flares produce hard (>2 keV) X-rays (e.g. Preibisch et al. 2005).
1439 YSOs, 410 matched to CCCP sources:

- $M > 3.1 \, M_\odot$
- $3.1 > M > 2 \, M_\odot$
- $M < 2 \, M_\odot$

Contours: CCCP stellar density (Feigelson et al. 2011)

Povich et al. (2011b)
YSO Mass Function (YMF)

1439 YSOs detected, incomplete for $m < 3.1 \, M_\odot$

$>20,000$ YSOs predicted, with TOTAL mass $>16,000 \, M_\odot$, extrapolated to $m \geq 0.1 \, M_\odot$

Present-Day SFR: $>0.008 \, M_\odot/yr$

Black curve: Salpeter–Kroupa IMF (Kroupa 2001)
Red curve: Best-fit power law to intermediate-mass YMF (Povich & Whitney 2010; Povich et al. 2011b)
Scaling XLF from 840 stars in the Orion Nebula Cluster (ONC) to match Carina XLFs gives an estimate of total stellar population $>38,000$ diskless PMS stars predicted, extrapolated to $m \geq 0.1 \, M_\odot$.

Povich et al. (2011b)
Carina Nebula SFR from IR and X-ray “Star Counts”

- Global population: $5.8–7.4 \times 10^4$ stars, containing $4.6–5.9 \times 10^4$ M_\odot total mass.

- SFR: $0.009–0.012$ M_\odot/yr, averaged over past 5 Myr, punctuated by more intense bursts that created the several massive clusters (e.g. Trumplers 15, 16, and 14).

- Carina Nebula represents $\sim0.5\%$ of the Galactic SFR (Chomiuk & Povich 2011).
What would the Carina H II region look like if viewed from a nearby, external galaxy?
What would the Carina H II region look like if viewed from a nearby, external galaxy?
Extract IR flux densities for Galactic H II regions using large apertures on MSX and IRAS images. Then interpolate their IR SEDs to measure luminosities.

Plot SFR derived from the X-ray + IR “star counts” methods against equivalent Spitzer/MIPS 24 µm luminosity.

Note the significant, systematic discrepancy between this relation and the Calzetti et al. (2007) extragalactic calibration (dashed line).

Chomiuk & Povich (2011)
Lada et al. (2012)

Range of CP11 SFRs

x2.7 (again?)
Improving CP11: Nebular SEDs

(A) MYStiX Members

M17
D = 2 kpc

IRAC 8.0 µm
MSX 21 µm
SPIRE 350 µm

(B) PACS
MSX
SPIRE
IRAC

ground based radio

Planck
Improving CP11: Ages on the Probabilistic H–R Diagram (pHRD)

Background

Stars?
Main-sequence
Stars
!

pMAD: Transformation of pHRD into Mass–Age model parameter space

Povich et al. (2014, in prep)

SED modeling of 2376 diskless, X-ray emitting stars from CCCP
1439 YSOs, 410 matched to CCCP sources:

- $M > 3.1 \, M_\odot$
- $3.1 > M > 2 \, M_\odot$
- $M < 2 \, M_\odot$

Contours: CCCP stellar density (Feigelson et al. 2011)
Tr 15 region

Vertical lines (pMADs): subcluster median AgejX (Getman et al. 2014)

Tr 14 region
Tr 16 region

Vertical lines (pMADs): subcluster median Age \(\text{Age}_{\text{X}} \) (Getman et al. 2014)

South Pillars
Massive Young star-forming complex Study in Infrared and X-rays (MYStIX)

- 5-year program, funded by NASA Archival Data Analysis Program (ADAP) and NSF AST grants to Penn State (plus MSP’s NSF Postdoctoral Fellowship award)
- 20 Galactic star-forming complexes, $d = 0.4$ to 3.7 kpc (Feigelson et al. 2013).
- >20,000 X-ray sources + >10,000 IR excess sources classified.

Massive Star-forming regions Across the Galaxy in Infrared and X-rays (MAGIX): Pending NASA ADAP proposal to study 20 of the most massive Galactic complexes (multiple early O stars).
MYStIX: Outer Galaxy “Prototype” Region

NGC 2264
d = 0.9±0.1 kpc

Galactic latitude
Galactic longitude

Stage 0/I YSO
Stage II/III YSO
Ambiguous stage YSO

Povich et al. (2013)
Figure 2. —

- **Serpens South**
 - $d = 0.26$ kpc
 - (not in MYStIX)

- **W40**
 - $d = 0.5$ kpc

- **Lagoon Nebula (M8)**
 - $d = 1.3$ kpc

- **Eagle Nebula (M16)**
 - $d = 1.75$ kpc

- **NGC 6357**
 - $d = 1.7$ kpc

- **4 of the 20 MYStIX Complexes**
 - MIRES Catalog; Povich et al. (2013)
The Bottom Line...

- The combination of X-ray and IR observations of resolved young stellar populations provides a powerful tool for exploring mesoscale star formation the Milky Way.
- We are now in a position to calibrate SFRs versus nebular emission tracers without invoking stellar population synthesis models.
- Goal: bridge the orders-of-mag gulf in scales (spatial, temporal, luminosity) separating the detailed, local studies with extragalactic studies. *Facilitate comparisons of theoretical “universal” SF laws to observations.*