The Hunt for Massive Stars Hiding in the Milky Way

Matthew S. Povich
NSF Astronomy & Astrophysics Postdoctoral Fellow
The Pennsylvania State University
Brief Background

Or, How I Became a Massive Stars Guy Without Really Trying
Bow shocks: Stellar winds meet moving gas

Povich et al. (2008)
Bow shocks:
Stellar winds meet moving gas

Spitzer “Color Code 1”
IRAC 3.6 µm • stars, PAHs
IRAC 4.5 µm • stars, shocked/ionized gas
IRAC 8.0 µm • PAHs [+hot dust]

Shock Fronts in the Omega Nebula (M 17)
NASA / JPL-Caltech / M. Povich (Univ. of Wisconsin)

Spitzer Space Telescope • IRAC
ssc2008-21a
Everett & Churchwell (2010): **Dust** must be continuously replenished within N49.

Draine (2011): 20 cm shell in N49 shaped by radiation pressure and winds.
The Chandra Carina Complex Project (CCCP)

Candidate X–ray Emitting OB Stars
(Povich et al. 2011a)
CCCP Collaboration

16 papers published in a May 2011 Special Issue of ApJS!
Available at http://cochise.astro.psu.edu/Carina_public/special_issue.html

Penn State Core Group
Leisa Townsley – Mighty Leader
Patrick Broos – Data Sage
Konstantin Getman
Eric Feigelson

MSP’s Coauthors at Other Institutions
Nathan Smith
Steve Majewski
Marc Gagné
Brian Babler
Yasuo Fukui
Rémy Indebetouw
Marilyn Meade
Thomas Robitaille
Keivan Stassun
Richard Townsend
Barbara Whitney
Yoshinori Yonekura

PLUS: About 50 other people!
Hubble Space Telescope image of Herbig-Haro jets and pillars in the Carina Nebula
Hubble Space Telescope

~6′ × 12′ mosaic of the Great Nebula in Carina
The Great Nebula in Carina

- Carina is a “starburst region,” an example of the large-scale star formation seen in starburst galaxies.
- Carina contains at least 200 O and early-B stars, including the prototype O2 I star, +WRs +Eta Car.

D ~ 2.3 kpc, 10’ ~ 6.7 pc, Bipolar, proto-superbubble!
Carina’s stellar population is a cluster of clusters. The 3 most massive clusters, Tr 14, 15, and 16, dominate the bright central region of the nebula.

The Great Nebula in Carina

- Carina’s stellar population is a cluster of clusters. The 3 most massive clusters, Tr 14, 15, and 16, dominate the bright central region of the nebula.

D ~ 2.3 kpc, 10' ~ 6.7 pc.

Bipolar, proto-superbubble!

2MASS JHK, ~28' x 28'
The Vela–Carina Survey
PI S. R. Majewski
Chandra

0.50 – 0.70 keV
0.70 – 0.86 keV
0.86 – 0.96 keV

Townsley et al. (2011)
• Spectral energy distribution (SED) fitting uses all available photometric data.
• Fit reddened spectra to data, using an extinction law characterized by $R_V = A_V/E(B-V)$. Note standard diffuse ISM law has $R_V = 3.1$. (See Cardelli et al. 1989, Indebetouw et al. 2005, Robitaille et al. 2007.)
Note degeneracy of A_V and T_{eff}.

Secure OB candidate

Marginal OB candidate:

$L_{\text{bol}}(\text{MS}) = 10^4$ L$_{\odot}$

Pre-main-sequence degenerate case
The best-studied regions of the Carina Nebula are **not obscured**, but much of the nebula has been hidden by dust.

This wide-field image could fit 4 full Moons and contains over 50,000 stars.

There are many places for massive stars to hide!
Known massive, O and B–type stars

The Carina Nebula: Central 1°

Visible Light
Digitized Sky Survey

Near–Infrared
Two–Micron All–Sky Survey

Mid–Infrared
Spitzer Space Telescope

140 known high–mass stars, located in the less–obscured regions and in the well–studied, famous clusters.
Known massive, O and B–type stars

Candidate massive, O and early B–type stars

The Carina Nebula: Central 1°

Visible Light
Digitized Sky Survey

Near–Infrared
Two–Micron All–Sky Survey

Mid–Infrared
Spitzer Space Telescope

- 140 known high-mass stars, located in the less-obscured regions and in the well-studied, famous clusters.

- 94 new candidate high-mass stars, located in the more-obscured regions and outside the famous clusters.
Correcting for selection biases, candidate OB stars could **double** the massive stellar population.
OB search in M17

Heather Busk (PSU grad student)

OB candidate from X-ray/SED method

Candidate is known OB star

ACIS Pointing 3: 40 ks

Pointing 1: 320 ks

Pointing 2: 96 ks
Bolometric luminosities and reddening of known Carina OB stars: SED fitting method compared to $B - V$ photometric method.

Late O and B dwarfs
Early O dwarfs and OB (super)giants

- $B - V$ method: more vulnerable to photometric errors; more sensitive to R_V.
- SED method systematic: What’s up with the OB (super)giants?
Spectral models matter!

- ATLAS9 LTE, plane-parallel atmosphere (Kurucz 1994).
- CMFGEN non-LTE, line-blanketed, expanding atmosphere (Hillier & Miller 1998).

OB supergiant winds produce IR excess emission that should be detectable with Spitzer photometry. Can spectroscopy + IR SED fitting better constrain mass-loss rates in spectral models?
Lessons from the CCCP

- Extrapolating IMF from known massive star content of Carina Nebula underestimates total stellar population by a factor >2.
- Candidate obscured, X-ray-emitting OB stars could increase known massive stellar population by up to a factor of ~2.
- SED modeling not simply a means for identifying new OB stars. It also provides improved measurements of extinction, bolometric luminosity, and (hopefully) soon mass-loss rates.
The Milky Way Project

Citizen scientists in search of Galactic H II regions
The human eye–brain combination is still the best pattern-recognition system in the known universe!
THE MILKY WAY PROJECT TEAM

Kim Arvidsson » Postdoctoral researcher at Adler Planetarium.

Robert Benjamin » GLIMPSE team member and Professor of Physics, University of Wisconsin-Whitewater.

Eli Bressert » PhD student at ESO and the University of Exeter researching star formation and star clusters.

Ed Churchwell » Professor Emeritus at the University of Wisconsin-Madison, Principal Investigator of the GLIMPSE I&II surveys and team member on all other GLIMPSE Surveys.

Chris Lintott » Astronomer and Zookeeper normally in Oxford but currently at Adler Planetarium, Chicago.

Sarah Kendrew » Postdoctoral researcher at the Max Planck Institute for Astronomy, Heidelberg.

Sarah Maddison » Associate Professor of Astrophysics at Swinburne University, Australia.

Matthew Povich » NSF Postdoctoral Fellow at Pennsylvania State University.

Kevin Schawinski » Einstein Fellow at Yale University.

Reid Sherman » Millimeter-wave observational astronomer, graduate student at University of Chicago.

Arfon Smith » Technical lead of the Zooniverse. He used to know lots of things about astronomy but these days spends most of his time thinking in code.

Robert Simpson » Zooniverse Researcher and Developer at Oxford University. PI of the Milky Way Project.

Barbara Whitney » Senior Scientist at University of Wisconsin and Space Science Institute.

Grace Wolf-Chase » Astronomer, Adler Planetarium & Senior Research Associate, University of Chicago.

Material on this site is based partly upon work supported by the National Science Foundation under grant numbers DRL-0941610 and AST-0901646. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation (NSF).
Infrared Images of H II Region “Bubbles”

Spitzer Color Code 2:
- STARS
- DUST and molecules outlining bubbles
- WARM DUST inside bubbles
Example $3^\circ \times 2^\circ$ GLIMPSE+MIPSGAL Mosaic
Centered @ $(l,b) = (12.0^\circ,0.0^\circ)$
ALL user drawings
“Cleaned” user drawings \rightarrow Bubbles catalog
ALL user drawings
ALL user drawings
ALL user drawings—masked @ threshold “hit rate.”
“Heat maps” highlighting PDRs
The Milky Way Project: First Results

• >4,000 bubbles in catalog, a factor of ~7 increase over existing catalogs (Churchwell et al. 2006, 2007). The vast majority are H II regions.

• “Heat map” masks highlight PDRs and provide a roadmap for Galaxy-wide study of star formation triggered by expanding H II regions.

Simpson, Povich et al. (in prep)