Background

The MYStIX project (Massive Young star-forming complex Study in Infrared and X-rays) is compiling comprehensive catalogs of the stellar membership in 18 Galactic massive star-forming complexes (d = 0.4 to 3.6 kpc) [1]. MYStIX is the first project of its kind to study a large sample of Galactic regions in parallel, employing a homogeneous set of multi-wavelength data analysis techniques. Probable stellar members in each target region are identified using X-ray and/or infrared photometry via two pathways: (1) X-ray detections of young/massive stars with coronal activity/strong winds or (2) Infrared (IR) excess–based identification of young stellar objects (YSOs) with circumstellar disks and/or protostellar envelopes.

We present the methodology and initial results of pathway (2), using Spitzer/IRAC, 2MASS, and UKIDSS imaging and photometry. Although IR excess selection of YSOs is well-trodden territory [2,3,4], MYStIX presents unique challenges. The target regions run the gamut from relatively nearby, lower-mass regions in uncrowded fields (e.g., NGC 2264), to massive complexes located at greater distances along complicated, inner Galaxy sightlines (e.g., NGC 6357). We have developed a new procedure combining IR spectral energy distribution fitting [5] with IR color cuts and spatial clustering to separate probable YSO members in each MYStIX target field from the myriad types of contaminating objects that resemble YSOs: extragalactic sources, evolved stars, and polycyclic aromatic hydrocarbon (PAH) nebular knots. Applying this technique consistently across 18 MYStIX complexes, we have produced the MYStIX IR-Excess Source catalog (MIRES).

MIRES Catalog Statistics

Full MIRES Catalog:
- 10,127 — probable YSO members
 - 3,059 (30%) — envelope-dominated (Stage 0/I [6])
 - 4,253 (42%) — disk-dominated (Stage II/III [6])
 - 2,815 (28%) — envelope/disk ambiguity [4]
- 1,664 — shocked molecular 4.5 µm emission [4]
- 5,064 — non-member YSOs/evolved stars
- 2,314 — obscured active galactic nuclei (AGN)
- 4,873 — starburst/PAH galaxies
- 1,035 — PAH nebular knots

MIRES Subset within MYStIX X-ray Fields
- 5,103 — probable YSO members
 - 1,646 (32%) — envelope-dominated
 - 1,946 (38%) — disk-dominated
 - 1,511 (30%) — envelope/disk ambiguity
 - 210 — shocked molecular 4.5 µm emission
 - 508 — non-member YSOs/evolved stars
 - 592 — obscured AGN
 - 1,495 — starburst/PAH galaxies
 - 351 — PAH nebular knots

The MYStIX project is supported at Penn State by NASA grant NNX09AC74G, NSF grant AST-0908038, and the Chandray ACIS Team contract SV1-70118. M.S.P. was supported by an NSF Astronomy & Astrophysics Postdoctoral Fellowship under award AST-0901646.

The MYStIX Infrared Excess Source Catalog: The Dark Art of Hunting Young Stellar Objects with Infrared Excess Emission

M. S. Povich 1,2, M. A. Kuhn 3, K. V. Getman 4, E. D. Feigelson 5, H. A. Busk 2, P. S. Broos 6, L. K. Townsley 7, and T. Naylor 8

1California State Polytechnic University, Pomona; 2The Pennsylvania State University; 3University of Exeter

- Starburst/PAH galaxies (squares) + AGN (triangles)
- Non-member YSOs/evolved stars

Figure 1. — MYStIX “prototype” star-forming complexes NGC 2264 and Trifid, displayed at the same angular scale. Upper panels: Locations of all MIRES catalog entries overlaid on Spitzer/IRAC 3.6 µm images, highlighting the very different levels of field star versus extragalactic source contamination between inner and outer Galaxy sightlines. Lower panels: Locations of MIRES classified as probable YSO members of the MYStIX complexes overlaid on Spitzer/IRAC 8.0 µm images, highlighting PAH nebularity and IR dark clouds.

Figure 2. — Four additional MYStIX complexes with probable MIRES YSO members displayed on 8 µm images (common angular scale).

Figure 3. — Mid-IR color-color diagrams (CCDs) of the full MIRES catalog. All sources with photometric uncertainties ≤ 0.1 mag in the relevant bandpasses are plotted. (a) 3-band CCD showing color cuts used to identify 4.5 µm shock emission and PAH nebular knots. (b) 4-band CCD with the “disk domain” of Allen et al. (box).

MYSX Science

Both the MIRES and full MYStIX young stellar catalogs [7] will be published as electronic tables that will provide the foundation for future studies of diverse phenomena related to massive star cluster formation, including:

- cluster structure and cluster–molecular cloud co-evolution
- circumstellar (including protoplanetary) disk demographics and evolution
- protostars and protostellar outflows
- massive star feedback and triggered star formation
- star formation rates