SimpliciTI
by Texas Instruments

- Low Power
- Simplicity
- Low Cost
What is it?

- SimpliciTI is
 - Low Power: a TI proprietary low-power RF network protocol
 - Low Cost: uses <4K / 8K FLASH, < 512 bytes / 1K RAM
 - Flexible: simple star w/ extendor and/or p2p communication
 - Simple: Utilizes a very basic core API
 - Versatile: MSP430+CC1100/2500, CC1110/2510, and DSSS parts
 - Low Power: Supports sleeping devices
Application Areas?

SimpliciTI supports:

- alarm & security: occupancy sensors, light sensors, carbon monoxide sensors, glass-breakage detectors
- smoke detectors
- AMR: gas meters, water meters, e-meters
- home automation: garage door openers, appliances, environmental devices
- and many more...
Networking Basics

- **Device Configurations**
 - Access Point (AP)
 - Repeater (RE)
 - Sleeping Device (SD)
 - Device (D)
 - TX-Only Device (TD)

- **Topologies**
 - AP Star
 - AP Star w/ Repeaters
 - Peer2Peer
SimpliciTI Network topology: wireless sensing application

- Range can be extended through repeaters.
- The circles represent range of gateway and extended range of repeaters.

Examples message flows:
- Peer2Peer message
- Message to Access point
- Message repeated through range extenders
SimpliciTI network topology: Active RF tags

- Active RF tags typically enter and exit the network ad-hoc.

- They must be able to quickly associate to the network while maintaining low power consumption.
SimpliciTI Smoke Detector System

Optional Access point
Sensor / Extender
Alarm Triggered Device

Examples message flows

Flooded Alarm Message
Hardware Support

- Initial release using Experimenter’s Board
 - (MSP430FG4619) w/ Chipcon Socket Interface for CC1100 / CC2500

- Future support
 - SOC (CC2510 / CC1110)
 - DSSS (MSP+CC2420, CC2430)
SimpliciTI vs. ZigBee

<table>
<thead>
<tr>
<th>TI protocol software:</th>
<th>SimpliciTI</th>
<th>ZigBee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network properties:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mesh network</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Typical number of nodes</td>
<td>from 2 to ~30</td>
<td>from 2 to hundreds</td>
</tr>
<tr>
<td>Point-to-point and star network</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Hardware and software:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hardware</td>
<td>Any MSP430 + CC TRX or 8051 SoC</td>
<td>MSP430F2418 + CC2420, CC2430</td>
</tr>
<tr>
<td>Frequency & modulation</td>
<td>Any TI radio: sub 1GHz, 2.4GHz, standard or proprietary</td>
<td>IEEE 802.15.4 DSSS, 2.4GHz</td>
</tr>
<tr>
<td>SW object distribution</td>
<td>Free download</td>
<td>Free download</td>
</tr>
<tr>
<td>SW source code</td>
<td>Free download</td>
<td>Not required for development.</td>
</tr>
<tr>
<td>Compiled code size on MSP430</td>
<td>~4k depending on configuration</td>
<td>50-60k depending on configuration</td>
</tr>
<tr>
<td>Interoperability between vendors:</td>
<td>No</td>
<td>Optional</td>
</tr>
<tr>
<td>Encryption</td>
<td>Yes, 128bit AES on enabled HW Devices, other in software.</td>
<td>Yes, 128bit AES</td>
</tr>
</tbody>
</table>
Architectural Overview

• Layers
 – LHAL (BSP)
 – NWK
 – nwk Apps (modules)
 – customer apps

• Network Support
 – init
 – ping
 – link / linklisten
 – nwk mgmt
 – security
 – freq agility
 – send / receive
 – I/O
Architectural Highlights

- no timers
- no osal
- simple bsp (no formal HAL)
- no formal PHY or link layer
- nwk manages
 - Radio, Rx / Tx, queuing, demux (ports)
- modular optional security

- *Architecture is designed to ensure compact code size!*
- *Full flexibility for the application programmer since no timers are used!*
Only 6 API calls

- **Initialization**

  ```c
  smplStatus_t SMPL_Init(void);
  ```

- **Linking** (bi-directional by default)

  ```c
  smplStatus_t SMPL_Link(linkID_t *linkID);
  smplStatus_t SMPL_LinkListen(linkID_t *linkID);
  ```

- **Peer-to-peer messaging**

  ```c
  smplStatus_t SMPL_Send(lid, *msg, len);
  smplStatus_t SMPL_Receive(lid, *msg, *len);
  ```

- **Configuration**

  ```c
  smplStatus_t SMPL_ioctl(object, action, *val);
  ```
Simple Configuration

/* FROM smpl_config.dat */

// Number of connections supported
-DNUM_CONNECTIONS=4

// Maximum size of application payload
-DMAX_APP_PAYLOAD=20

// size of low level queues for sent and received frames.
-DSIZE_INFRAME_Q=2
-DSIZE_OUTFRAME_Q=2

// default Link token
-DDEFAULT_LINK_TOKEN=0x01020304

// default Join token
-DDEFAULT_JOIN_TOKEN=0x05060708

// this device's address.
-DTHIS_DEVICE_ADDRESS="{0x79, 0x56, 0x34, 0x12}"

// device type
-DEND_DEVICE

// for End Devices specify the Rx type.
//-DRX_LISTENS
//-DRX_POLLS
//-DRX_NEVER
-DRX_ALWAYS

- operational mode (type)
- power mode (sleep support)
- topology
- addressing / identification
- RAM allocation
 – packet size
 – buffer sizes
 – # supported links (connections)
- security tokens
- messaging (hop ct, repeaters)
- radio (freq, crypto key, modulation, CCA parameters)
Runtime Configuration

- radio frequency
- encryption key
- app access to frame header
- app access to radio controls
- AP nwk mgmt control

<table>
<thead>
<tr>
<th>Object</th>
<th>Description</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOCTL_OBJ_FREQ</td>
<td>Get/Set radio frequency</td>
<td>Frequency agility. May be used by APP or NWK.</td>
</tr>
<tr>
<td>IOCTL_OBJ_CRYPTKEY</td>
<td>Set encryption key</td>
<td>Customer may provide external means for user to set a non-default key. Requires reset to take effect.</td>
</tr>
<tr>
<td>IOCTL_OBJ_RAW_IO</td>
<td>Application layer access to the frame header to directly send or receive a frame.</td>
<td>This object is used for example to ping another device where the network address of the target device is supplied directly and not done through the connection table.</td>
</tr>
<tr>
<td>IOCTL_OBJ_RADIO</td>
<td>Application layer access to some radio controls.</td>
<td>Limited access to radio directly. For example, sleeping and awakening the radio and getting signal strength information.</td>
</tr>
<tr>
<td>IOCTL_OBJ_AP_JOIN</td>
<td>Access Point join-allow context</td>
<td>Interface to control whether Access Point will allow devices to join or not.</td>
</tr>
</tbody>
</table>

Table 7: Customer configurable run-time objects
Example: How to configure Access Point

- star hub in the network (1 / net)
- always-on (acts as range extender)
- store and fwd for sleeping devices
- linking and token (link and join) mgmt
- AP can implement end device functionality (link listen, receive)

// Initialize the HW/Radio
HAL_HWInit(); // initialize the BSP (API subject to change)
SMPL_Init();

// Handle Linking
SMPL_LinkListen(&linkID1);

// Receive Messages
While (1) {
 while((SMPL_SUCCESS == SMPL_Receive(linkID1, msg, &len) {
 // do something
 }
}
Example: How to configure Range Extender

• always-on device
• repeats received frames (with limitations)
• limited to 4 / net (although flexible in design)

```c
// Initialize the HW/Radio
HW_Init();
SMPL_Init();

// No Linking or application level functionality
```
Example: How to configure End Device

- poll for data
 - polling is Port specific
 - no data results in blank (empty) response
- API e.g. Sequence
 - Init (and Join)
 - Link (assumes listen)
 - Sample Temp
 - Send
- option to sleep

```c
void main()
{
    linkID_t linkID;
    uint32   temp;

    // Initialize the board's HW
    HW_Init();
    SMPL_Init();
    // link.
    SMPL_Link(&linkID);

    while (TRUE)
    {
        // sleep until timer. read temp sensor
        MCU_Sleep();
        HW_ReadTempSensor(&temp);
        if (temp > TOO_HIGH)
        {
            SMPL_Send(linkID, "Hot!", 4);
        }
        if (temp < TOO_LOW)
        {
            SMPL_Send(linkID, "Cold!", 5);
        }
    }
}
```
Addressing and Communication

- net address = hw addr (4 byte) + app port
 - statically assigned hw addr
 - no address resolution mechanism
- byte 1: 0x00, 0xFF – reserved for broadcast
- communication topologies:
 - direct peer-2-peer
 - direct p2p through RE
 - store and fwd p2p through AP
 - store and fwd p2p through RE and AP
Packet Format

<table>
<thead>
<tr>
<th>PREAMBLE</th>
<th>SYNC</th>
<th>LENGTH</th>
<th>DSTADD</th>
<th>SRCADD</th>
<th>PORT</th>
<th>DEVICE INFO</th>
<th>TRACTID</th>
<th>App Payload</th>
<th>CRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>n</td>
<td>2</td>
</tr>
</tbody>
</table>

- Preamble: hw sync
- Sync: hw sync
- Length: bytes non-phy
- Dstaddr: hw filter 1 byte
- Srcaddr
- Port: app port number
- Dev info: capabilities
- Tractid: transaction nonce or seq num
- App pyld: 0 <= n <= 52 byte
- Crc: must be valid

SW Encryption

Technology for Innovators

Texas Instruments
Additional Details

- IAR development environment
- minimal hw abstraction
- no driver support (UART, SPI, LCD, Timers)
- no heap utilization
- no runtime (nwk) context storage
- single thread (app), no tasks or scheduling
- no nwk callbacks – app must poll nwk layer
- nwk api is synchronous (does not return until operation is complete)
- retries and acks must be managed by app
Downloads simpliciTI today to learn more!
It is a free download and full source code is included!

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Weblink</th>
</tr>
</thead>
<tbody>
<tr>
<td>simpliciTI</td>
<td>Network protocol software</td>
<td>www.ti.com/simpliciti</td>
</tr>
<tr>
<td>MSP430 code library</td>
<td>Code library for communication between MSP430 and CC RF-ICS</td>
<td>www.ti.com/ccmsplib</td>
</tr>
<tr>
<td>Ultra Low-Power MSP430 MCUs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low-Power RF ICs</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise to ensure the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their applications, and that TI is not responsible for compliance with any such requirements.

Buyers acknowledge and agree that TI is not responsible or liable for any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or “enhanced plastic.” Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer’s risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplifiers</td>
<td>amplifier.ti.com</td>
</tr>
<tr>
<td>Data Converters</td>
<td>dataconverter.ti.com</td>
</tr>
<tr>
<td>DSP</td>
<td>dsp.ti.com</td>
</tr>
<tr>
<td>Interface</td>
<td>interface.ti.com</td>
</tr>
<tr>
<td>Logic</td>
<td>logic.ti.com</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>power.ti.com</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>microcontroller.ti.com</td>
</tr>
<tr>
<td>RFID</td>
<td>www.ti-rfid.com</td>
</tr>
<tr>
<td>Low Power</td>
<td>www.ti.com/lpw</td>
</tr>
<tr>
<td>Wireless</td>
<td>www.ti.com/wireless</td>
</tr>
<tr>
<td></td>
<td>www.ti.com/audio</td>
</tr>
<tr>
<td></td>
<td>www.ti.com/automotive</td>
</tr>
<tr>
<td></td>
<td>www.ti.com/broadband</td>
</tr>
<tr>
<td></td>
<td>www.ti.com/digitalcontrol</td>
</tr>
<tr>
<td></td>
<td>www.ti.com/military</td>
</tr>
<tr>
<td></td>
<td>www.ti.com/opticalnetwork</td>
</tr>
<tr>
<td></td>
<td>www.ti.com/security</td>
</tr>
<tr>
<td></td>
<td>www.ti.com/telephony</td>
</tr>
<tr>
<td></td>
<td>www.ti.com/video</td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2007, Texas Instruments Incorporated