Title: The Combinatorics Governing the Periodicity of $p(n, d)$ Modulo M.

Abstract: From the generating function, one can quickly see that $p(n, d)$, the number of partitions of n into parts of size at most d, is periodic modulo M. It is natural to ask if there is a purely combinatorial explanation for this periodicity.

The search for an explanation led us to study the geometry of lattice points in polyhedra, which ultimately inspired a new decomposition of partitions into their “ℓ-box remainder” and “ℓ-box quotient.” These two new objects bear many similarities to the ℓ-core and ℓ-quotient of a partition, which were used in the famous combinatorial proof of the first four Ramanujan congruences by Garvan, Kim, and Stanton. This new ℓ-box decomposition does lead to a combinatorial proof of the periodicity of $p(n, d)$ modulo M, and the proof provides substantial structural information about the behavior of $p(n, d)$.

Some immediate consequences of this work include new proofs of several infinite families of known Ramanujan-type congruences for $p(n, d)$. Furthermore, these methods apply equally well to partitions whose parts come from any fixed finite set A, which allows for many new generalizations of the previously known infinite families of congruences.

This talk is joint work with Felix Breuer and Brandt Kronholm.