MAT 201: Review 1

Introduction to Matlab

- Variable assignment (e.g., \(w = [1, 2, 3; 4, 5, 6] \) assigns a \(2 \times 3 \) matrix to \(w \))
- Colon to create a vector (e.g., \(z = 6 : -2 : 1 \) assigns \([6, 4, 2]\) to \(w \))
- Standard mathematical operations \(+\, -\, \ast\, /\)
- Element-wise mathematical operations \(\ast\, ./\, .^2 \)
- Program structure

  ```matlab
  function [fOutSum, fOutProd] = MyFunction(fIn1, fIn2)
  fOutSum = fIn1 + fIn2
  fOutProd = fIn1 .* fIn2
  end
  ```
- Many built-in functions (\texttt{zeros}, \texttt{ones}, \texttt{size}, \texttt{length}, etc)
- Input and output via semi-colon and \texttt{disp} with \texttt{sprintf}
- \texttt{for} loop example

  ```matlab
  x = 10 : 0.1 : 10.5;
  for i = 1 : length(x)
    disp(sprintf('x(%d) = %0.1f', i, x(i)));
  end
  ```
- \texttt{while} loop example

  ```matlab
  x = 1;
  while x < 5
    disp(sprintf('x = %d', x));
    x = x + 1;
  end
  ```
- \texttt{if} statement example

  ```matlab
  if i == 1
    disp(sprintf('Yay i is 1'));
  elseif i < 3
    disp(sprintf('i is less than 3'));
  else
    disp(sprintf('i is greater than or equal to 3'));
  end
  ```
2.1 Floating-Point Numbers

- Conversion from binary to decimal numbers
- Floating-point form (fl\(x\) = \(\sigma \cdot \bar{x} \cdot b^e\) with sign \(\sigma\), mantissa \(\bar{x}\), base \(b\), exponent \(e\)) and restrictions
 - IEEE single precision (32-bit)
 (1 bit \(\sigma\), 23 bits \(\bar{x}\) excluding leading 1, 8 bits \(e \in [-126, 127]\))
 - IEEE double precision (64-bit)
 (1 bit \(\sigma\), 52 bits \(\bar{x}\) excluding leading 1, 11 bits \(e \in [-1022, 1023]\))
- Accuracy of floating-point numbers (as not all numbers are representable)
 - Machine epsilon = \(\epsilon_{\text{mach}}\) = (smallest representable number above 1) - 1 = \(2^{-n}\)
 if have \(n\) bits for \(\bar{x}\) excluding leading 1 and at least \(\lfloor \log_2 n \rfloor\) bits for \(e\)
 - Largest integer such that all integers 1 to \(M\) are representable = \(M = 2^n\)
 if have \(n - 1\) bits for \(\bar{x}\) excluding leading 1 and at least \(\lfloor \log_2 n \rfloor\) bits for \(e\)
- Chop or round to approximate \(x\) by fl\(x\) with fl\(x\) = \(x \cdot (1 + \epsilon)\) with \(\epsilon\) dependent on \(x\)
 - For chopping \(-2^{-n+1} \leq \epsilon \leq 0\)
 - For rounding \(-2^{-n} \leq \epsilon \leq 2^{-n}\)

2.2 Error Types

- Absolute error = Err\((x_A) = x_T - x_A\)
- Relative error = Rel\((x_A) = \frac{x_T - x_A}{x_T}\)
- Sources of error (human, modelling, measurement, truncation, floating-point)
- Catastrophic cancellation (computation with low error numbers gives high error result)

2.3 Propagation of Error

- Propagated error in mathematical operations
 - Propagated error = \(E = (x_T \circ y_T) - (x_A \circ y_A)\)
 - Propagated error can be bounded through interval analysis
 - Propagated relative error = Rel\((x_A \circ y_A) = \frac{(x_T \circ y_T) - (x_A \circ y_A)}{x_T \circ y_T}\)
 - Propagated relative error can be approximated using perturbation analysis
 \(x_T = x_A + \epsilon\) and \(y_T = y_A + \eta\)
 - Propagated error / propagated relative error occur as can’t represent inputs to an operation exactly
• Total computation error \((x_T \circ y_T) - (x_A \circ y_A) = E + (x_A \circ y_A) - (x_A \circ y_A) \approx E \) occurs as also can’t represent the output of an operation exactly

• Error in function computation

 – Absolute error in function computation \(= f(x_T) - f(x_A) = f'(\xi) (x_T - x_A) \) with \(\xi \) some number between \(x_T \) and \(x_A \)

 – Relative error in function computation \(\approx \left(\frac{f'(\xi)}{f(x_T)} \right) (x_T) \text{Rel}(x_A) \) assuming \(x_T \approx x_A \) and \(f' \) well-behaved

 – Condition number \(\kappa \) represents inherent difficulty in computing \(f \)

2.4 Summation

• Summing \(n \) floating-point numbers \(a_i \) as \(S = \sum_{i=1}^{n} a_i \) involves \(n-1 \) addition operations, each with error

• Absolute error \(= S - S_n \approx -a_1(\epsilon_2 + \cdots + \epsilon_n) - \sum_{i=2}^{n} a_i(\epsilon_i + \cdots + \epsilon_n) \) with \(\epsilon_i \) arising from floating-point chopping/rounding error

• Summing in order from smallest to largest attempts to minimize error

1.1 Taylor Polynomials

• Often approximate a complicated function \(f \) by its Taylor polynomial \(p_n(x; a) = \sum_{i=0}^{n} \frac{f^{(i)}(a)}{i!} (x - a)^i \) based at \(a \)

1.2 Error in Taylor Polynomials

• Taylor remainder \(= R_n(x) = f(x) - p_n(x; a) \)

• If \(f \) has \(n+1 \) continuous derivatives on \((\alpha, \beta) \) and \(a \in (\alpha, \beta) \) then there exists \(\xi \in (\alpha, \beta) \) with \(\xi \) between \(x \) and \(a \) (note, \(\xi \) is dependent on \(x \)) such that \(R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-a)^{n+1} \)