Skip to content
John A Rock

John A Rock

Professor

Mathematics and Statistics, College of Science

Email

jarock@cpp.edu

Phone number

909.869.2404

Office location

Building 8 - 103

Office hours

M T W TH F | CHECK CANVAS AND SYLLABI FOR DETAILS

Publications

  • ---. Arbitrarily Close: An Introduction to Real Analysis, 2025. 619 Wreath Publishing, 538 pages. 
  • ---. RIP: row integration by parts, Int. J. Math. Educ. Sci. Tech., 2021.
  • ---. A lecture on integration by parts, Math. Sci., Appl. Probab. Trust, Sheffield, 42 (2017), 1–9.
  • K. Dettmers, R. Giza, C. Knox, R. Morales, and ---, A survey of complex dimensions, measurability, and the lattice/nonlattice dichotomy, Discrete Contin. Dyn. Syst. Ser. S, Am. Inst. Math. Sci. (AIMS), Springfield, MO, 2, 10 (2017).
  • M. L. Lapidus, ---, and D. Žubrinic. Box-counting fractal strings, zeta functions, and equivalent forms of Minkowski dimension, in: Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics, Part 1, Contemporary Mathematics, Amer. Math. Soc., Providence, RI, 2013, 239–271.
  • R. de Santiago, M. L. Lapidus, S. Roby, and ---. Multifractal analysis of scaling zeta functions and recursive structure of lattice strings, in: Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics, Part 1, Contemporary Mathematics, Amer. Math. Soc., Providence, RI, 2013, 205–238.
  • K. E. Ellis, M. L. Lapidus, M. C. Mackenzie, and ---. Partition zeta functions, multifractal spectra, and tapestries of complex dimensions, in: Benoit Mandelbrot: A Life in Many Dimensions, World Scientific, Singapore, 2015, 267–322.
  • M. L. Lapidus, J. Levy-Vehel, and ---. Fractal strings and multifractal zeta functions, Letters in Mathematical Physics, 1, 88 (2009), 101–129.
  • M. L. Lapidus and ---. Toward zeta functions and complex dimensions of multifractals, Complex Variables and Elliptic Equations, 6, 54 (2009), 545–549.